摘要:本文结合堆肥化、卫生填埋两种现行的城市生活垃圾处理工艺,主要介绍了城市生活垃圾生物处理过程中的微生物种群,以及通过分析开发出的新的微生物技术,指出了应用于城市生活垃圾处理的高效的微生物技术的研究方向。
关键词:城市生活垃圾 微生物 强化微生物处理技术 基因工程
在MSW好氧生物降解过程中,细菌凭借强大的比表面积,可以快速将可溶性底物吸收到细胞中,进行胞内代谢。总的来说,其数量要比放线菌和真菌多得多。当然,在不同的环境中分离的细菌在分类学上具有多样性,主要有假单胞菌属(pseudomonas)、克雷伯氏菌属(klebsiella)以及芽孢杆菌属(bacillus)的细菌[1]。在堆肥过程中,细菌总数的变化趋势是高-低-高。堆肥初期,有机废物中携带有的大量细菌分解有机物质释放能量,使堆体温度上升,此时,常温细菌受到抑制,嗜温细菌活跃;当堆温升至高温阶段,只有少量的嗜热细菌可以活动;高温期过后,随着有机成分的减少,堆体温度降低,嗜温及常温细菌又开始活跃,使细菌总数上升。整个好氧降解过程中,嗜温细菌是堆肥系统中最主要的微生物。
自然界中的微生物总是杂居在一起,即使一粒土或一滴水中也生存着多种微生物。为了提高工艺中某种有效微生物的质量(纯度),提高处理效率,必须进行微生物的纯种分离技术。常见的纯种微生物的分离方法有平板划线分离、液体稀释法分离、利用选择培养基进行分离以及菌丝尖端切割分离[4]。
将已经熔化的培养基倒入培养皿中制成平板,用接种环沾取少量待分离的材料,在培养基表面平行或分区划线(图1),然后,将培养皿放入恒温箱里培养。在线的开始部分,微生物往往连在一起生长,随着线的延伸,菌数逐渐减少,最后可能形成纯种的单个菌落。
将待分离的样品经过大量稀释后,取稀释液均匀地涂布在培养皿中的培养基表面,培养后就可能得到单个菌落。
不同的微生物对不同的试剂、染料、抗生素等具有不同的抵抗能力,利用这些特点可配制出适合某种微生物生长而限制其他微生物生长的选择培养基。用这种培养基来培养微生物就可以达到纯种分离的目的。
这种方法适于丝状真菌。用无菌的解剖刀切取位于菌落边缘的菌丝的尖端,将它们移到合适的培养基上培养后,就能得到新菌落。
纯种分离后还要将微生物接种到垃圾中进行生物处理,但由于接种微生物的生存环境发生了变化,故在微生物适应周围环境前,处理效率达不到理想的效果,因而直接在垃圾中进行微生物接种的处理效果则应好于微生物纯种分离后再接种的处理效果。直接在垃圾中进行微生物接种可采用多种方式,如:垃圾渗滤液循环、加入一定比例的垃圾腐熟物等。
微生物对垃圾的降解是在多种微生物的协同作用下完成,在适宜的条件下,微生物协同作用能力的大小取决于微生物种群的大小与结构的稳定性。一般说来,生物的种群越大,其自动调控能力越好,适应性就越强,结构越稳定。经垃圾渗滤液循环或向待处理的新鲜垃圾中加入一定比例的垃圾腐熟物进行强化接种培养后,微生物的种群扩大,且循环次数越多,微生物的数量和种群就越大,这样就会更有利于对垃圾的降解。
研究表明,单一的细菌、真菌、放线菌群体,无论其活性多高,在加快垃圾生物降解进程中的作用都比不上复合微生物菌群的共同作用[5]。微生物菌剂是采用分离、筛选的有效微生物,配合一定的处理工艺和设备,通过合理地调配各种有效微生物的含量,进行筛选、培育MSW生物处理的高效复合微生物菌剂,进而来调节菌群结构、提高微生物降解活性,提高微生物降解有机成分的效率。复合微生物菌群中既有分解性细菌,又有合成性细菌;既有纤维素分解菌、真菌,又有放线菌。向工艺中添加复合微生物菌剂,不仅增加了工艺中微生物初始浓度,而且改善了工艺中微生物的种群结构。作为多种细菌共存的一种生物群落,依靠相互间共生增殖及协同作用,代谢出抗氧化物质,生成稳定而复杂的生态系统,使得整个生物降解过程中微生物数量保持相对稳定,处理效果较佳[6]。
固定化微生物技术是将微生物固定在载体上,使其高密度密集并保持其生物功能,在适宜的条件下还可增殖,以满足处理工艺的要求[7];实质上是从增加单位反应器内微生物数量的角度来提高微生物的活性,使得细胞密度高,微生物流失少、不需分离,就能纯化和保存高效菌株等优势,反应速度快,运行稳定、可靠,从而节约运行成本,提高MSW的处理效率。固定化微生物技术目前国内外还没有一个统一的分类标准,方法也多种多样,主要有载体结合固定化(吸附法)、交联固定化、包埋固定化和共价结合法,各种固定化方法和载体都各有特点,见表1。其中,微生物细胞的固定化方法以包埋法和吸附法最为常用。包埋法是将微生物封闭在天然高分子多糖类或合成高分子凝胶的网络中,从而使微生物固定化;其特点是可以将固定化微生物制成各种形状(球状、块状、圆柱状、膜状、布状、管状等),但包埋法制得的固定化微生物对传质有一定的影响。吸附法是将微生物细胞附着于固体载体上,微生物细胞与载体之间不起化学反应,并且具有操作简单、固定化条件温和、细胞活性损失小、载体可以反复使用等优点,所以被广泛应用和深入研究[8]。
性能 |
交联法 |
吸附法 |
共价结合法 |
包埋法 |
制备的难易 |
适中 |
易 |
难 |
适中 |
结合力 |
强 |
弱 |
强 |
适中 |
活性保留 |
低 |
高 |
低 |
适中 |
固定化成本 |
适中 |
低 |
高 |
低 |
存活力 |
无 |
有 |
无 |
有 |
适用性 |
小 |
适中 |
小 |
大 |
稳定性 |
高 |
低 |
高 |
高 |
载体的再生 |
不能 |
能 |
不能 |
不能 |
空间位阻 |
较大 |
小 |
较大 |
大 |
[5] 席北斗,刘鸿亮,孟伟. 垃圾堆肥高效复合微生物菌剂的制备[J]. 环境科学研究,2003,16:58
[6] 席北斗,刘鸿亮,黄国和等. 复合微生物菌剂强化堆肥技术研究[J]. 环境污染与防治,2003,5:264
[7] 胡燕荣,于雪峰. 固定化微生物处理有机污染物的研究进展[J]. 干旱环境监测,2002,4:195
[8] 何延青,刘俊良,杨平等. 微生物固定化技术与载体结构的研究[J]. 环境科学,2004,25:101
[9] 宋春敬,宋春娟,段昌群. 分子生物学技术及其在污染生态学中的应用研究进展[J]. 云南大学学报( 自然科学版),2003,5:72