水泵并联运行流量增幅的影响因素及相关问题探析

论文价格:0元/篇 论文用途:仅供参考 编辑:论文网 点击次数:0
论文字数:**** 论文编号:lw202393642 日期:2025-02-10 来源:论文网

简介: 分析了并联运行与单台运行相比,流量增量ΔG的影响因素,指出了ΔG过小可能造成的问题.在此基础上,从安全、节能和满足调节要求出发,对并联的选型及运行提出若干建议。

关键字:并联 流量增量 选型 节能

1.序言

  并联运行,一方面可以增大系统的流量,另一方面可以通过开启台数的不同,进行系统的流量调节,因而被广泛采用。但是,对于一个确定的管路系统来说,如果对泵选型不当,则可能出现两台(或多台)并联运行与单台运行相比,流量增加很少的情况。比如[1]:200RXL-24型,在管路特性曲线为H = 4.48×10-4G2mh3O 的系统中工作,单台运行时,流量为236.4 m3/h; 两台并联运行时,流量为246.7 m3/h; 三台并联运行时,流量为250.6 m3/h.。显然,在这种情况下,并联就失去了意义,因为既不能通过并联使流量较大幅度地提高,也不能通过改变运行台数有效地调节流量。再者,因为对泵按并联工况选型,使并联运行时的单机工况在合理工作区,则单台运行时的流量就会远远大于并联运行时的单机流量,严重偏离合理工作区,效率降低,所需功率大大增加,有可能使电机超载。因此,了解并联运行与单台运行相比,流量增大的幅度与哪些因素相关,对于正确进行泵的选型和系统设计是很有必要的。为了叙述的方便,对于两台并联运行(本文只讨论两台并联)与单台运行相比,流量的增大部分,本文称为并联运行的流量增量,并以ΔG表示。

2. 泵的特性对ΔG的影响

3.管路阻抗对ΔG的影响

  如图2所示,①﹑②﹑③分别为三条管路特性曲线,即H=S1G2,H=S2G2,H=S3G2,管路阻抗S1>S2>S3。④为泵的特性曲线,⑤为两台并联的特性曲线。单台分别在三个系统中工作时,工作点为A﹑B﹑C;两台并联分别在三个系统中工作时,工作点为A'﹑B'﹑C'。显然,ΔG1<ΔG2<ΔG3,即管路阻抗S越大,并联的流量增量ΔG越小;反之,S越小,则ΔG越大。也就是说,减小管路系统的阻抗,可以提高并联的流量增量。管路阻抗越小(特性曲线越平坦),越适宜于的并联工作。管路阻抗越大(特性曲线越陡),越不适宜于的并联工作。



4. 泵的特性与管路阻抗对ΔG的综合影响

  由上面的分析可知,并联运行的流量增量ΔG既与泵的特性有关,也与管路系统的阻抗有关。那么,如果简单地将泵的特性曲线分为平坦型和陡降型,将管路特性曲线分为缓升型和陡升型,则它们可以有四种组合如图3。显然,泵曲线的陡降型与管路曲线的缓升型结合,ΔG较大(图3a);泵曲线的平坦型与管路曲线的陡升型结合(图3d),ΔG较小;其它两种组合,ΔG居中。

  当然,“平坦”“陡”“缓”都是模糊的说法,并没有量的界定,但是这些定性的结论,起码可以明确,朝什么方向努力,能够增大泵的并联流量增量。



5. 采用开启台数进行调节可能出现的超载问题与ΔG

  对于两台及以上并联运行,无论是设计人员,还是用户,都有这样的意识:根据负荷的大小,改变开启的台数,即负荷大时多开,负荷小时少开。应当说,这也是采用并联的一个重要原因。但是,如果的并联流量增量ΔG过小,改变开启台数时有可能造成电机的超载。如图4所示,并联运行工况为A,并联运行时的单机工况为B,单台运行时的工况为C。显然单台运行时的流量GC大于并联运行时的单机流量GB,ΔG(=GA-GC)越小,GC就越大。并且,并联工况是设计工况,并联运行时的单机工况B应在合理工作区(效率较高的区域),而单台运行工况C则往往偏离合理工作区,效率降低。ΔG越小, C与B就相距越远,两工况的效率差也就越大。因此,ΔG的过小,将使C工况的轴功率大大超出B工况,在单台运行时就有可能发生超载现象。这里给出一个算例:采用KQL125/300-11/4型,流量推荐区间为55 - 110 m3/h。仍如图4所示,在并联特性曲线②上选定两台并联工况A为:162m3/h,27 mh3O,则并联运行时的单机工况B为:81 m3/h,27 mh3O,在流量推荐区域内。由A工况参数可得管路特性曲线为H=1.03×10-3G2(这里按闭式系统考虑)。那么,单台运行工况应当是泵的特性曲线①与管路特性曲线③的交点,但实际上①与③未能相交,只能顺着①的弧度作延长线,与③的交点C,近似认为是单台运行工况。C工况为:151 m3/h,22 mh3O。那么GC比GB增大86.4%,且C工况严重偏离推荐工作区,效率一定低于(可能是大大低于)B工况,所以C工况所需要的功率将大大超过B工况。如果电机是按流量推荐区域配置,单台运行时一定会超载。



6. 并联系统设计与运行中应注意的几个问题

⑴.应尽量不要采用性能曲线太平坦的,并注意减小系统阻抗,以增大并联运行与单台运行的流量差ΔG。这样既可避免电机超载,又可使台数调节有较好的效果。

⑵.选型时不能只考虑并联工况,必须校核单台运行工况,流量是否能够满足调节要求,以及是否有超载的可能。

⑶.对泵的选型,应尽量使并联运行和单台运行,泵都在高效率区工作。当然这往往难以做到,那么就应当根据并联运行和单台运行的时间比例,进行优化,以使泵的运行电耗在一年(或一个运行周期)内最少。

⑷.对于已有的系统,如果ΔG太小,单台运行有超载可能,最好的补救办法是装设自力式限流阀,在单台运行时,限流阀自动改变开度,增大阻抗,减小流量。也可以装设平衡阀,在单台运行时,用手动的方法增大阻抗,减小流量。

7. 结束语

  并联运行的流量增量ΔG的大小,对于采用开启台数进行调节的系统来说,在泵的选型和系统设计中是必须考虑的问题。

  本文只分析了两台并联的情况,对于两台以上并联运行,不难用同样的方法得到近似的结论。显然,对于的多台并联系统,更需要注意单台运行时的流量﹑效率和超载问题。

参考文献



1. 游昱昱,李德英.循环曲线拟合及其应用研究.全国暖通空调制冷2002年学术年会论文集

2. 屠大燕.流体力学与流体机械.中国建筑工业出版社,1994

3.牟灵泉,李向东,楚广明,桑海龙.空调水系统多台并联工作问题探讨.全国暖通空调制冷1998年学术年会论文集

如果您有论文相关需求,可以通过下面的方式联系我们
客服微信:371975100
QQ 909091757 微信 371975100