第一章引言
岩土工程中一个突出的课题就是要研究如何有效地模拟结构在开挖和填克作业过程中的位移和应力响应.一般认为,岩土材料具有流变性质,结构物在填充和开挖后往往要经过一段较长的时间才能达到稳定状态,如果所考虑的是结构的最终变形状态或各个施工阶段稳定后的变形情况,则可用弹塑性理论来模拟.如果考虑结构在施工过程中应力和位移分布的变化情况则可用弹粘塑性理论来模拟.在五十年代以前,工程师们往往依靠被高度理想化了的弹性和塑性理论来分析填方和挖方问题,Sherard111等曾探讨了这些解法,并指出该解法无法有效地模拟现场的几何形状,荷载条件,材料特性和变形厉史,故在实际分析设计中并不合适直到六十年代,由于计算机的出现和有限单元法的发展,才提供了一种较合适的方法,来解决广泛的岩土工程问题,这一方法也被引用干研究填方和挖方问题.在用有限元法处理这类问题时.
......
第二章有限元与边界元藕合方法及若干数值问题
1有限元与边界元藕合方法简介
由虚位移原理
可得有限元方程
.........
2.子结构法
在三维间题的有限元与边界元的藕合方法中,必须克分考虑节省内存的问题.为此我们采用将边界元方程全部凝聚到藕合面上的方法来实现两者的根合,即所谓的子结构法.
将边界元方程(2一10)写成分块的形式(参看图2一1)
.........
第三章弹塑性有限元与边界元的藕合一一一----一--一一一一一一21
1.弹塑性有限元的基本方程-----------------------一--一21
2.临界状态模型-------------------------------------一23
3.增量形式的边界积分方程-------------------------一一26
4.弹塑性有限元与边界元的藕合---一一-----------一一---一27
5.数值方法及程序框图------------一--一----一---------一28
6.算例------一---------------------------------一一一一一32
第四章弹粘塑性有限元与边界元的藕合一--一一一一--一一一一一36
1.弹粘塑性有限元的基本方程---------------------------一36
2.显式计算方法---------一--------------------------一40
3.隐式计算方法---------------------------------一---一46
4.程序框图-------------一----------------------一---一49
5.算例-----------一一-------------------------------一50
第六章用FEM弓EM藕合法求解动力间题的一种新格式
1.结构动力学的基本方程
不失一般性,本文以三维河题为例进行讨论.
以位移分量作为基本未知量的动力学方程为
..........
结束语
本文建立了三维弹塑性、弹粘塑牲有限元与边界元藕合数值方法,详细讨论了藕合中遇到的若干数值间题,并结合岩土工程的实际,对若干应用实例进行了分析和计算.本文主要做了以下几项工作
1.在有限元与边界元藕合过程中采用了子结构法
2.对边界元方程的系数矩阵进行了对称化处理
3.提出了解决根合面上面力不连续的方法.
4.讨论了利用对称性时,方程组产生奇异性的原因,给出了处理方法
5.在弹塑性有限元与边界元藕合方法中,我们采用了修正的临界状态模型,建立了材ises,Trese,a材ohr一Coutomb,Drucker于r色牙er和Critie:t材odet五种屈服准则的统一计算格式.
6.建立了用增量法和时间渐进法求解粘塑性藕合间题的计算格式.
7.推导了在显式计算方法中相应于临界状态模型的稳定时间步长条件,
8,推导了在隐式计算方法中相应于临界状态模型的R矩阵的显式表达式,
9.编制了三维弹塑性有限元与边界元藕合程序FEBEP,及三维粘塑性有限元与边界元藕合程序EFB钟;给出了若干宕土工程中的计算实例切
10.提出了用FEM一ME藕合法求解动力问题的一种新格式,并给出了全部显式计算公式.