基因工程硕士论文参考文献一
[1]卞云龙,邓德祥,王益军,才宏伟.(2007).基于AFLP和SSR标记的高粱分子遗传连锁图构建.分子植物育种5, 661-666.
[2]段永红,孙毅,仪治本,钱锦.(2009).高梁SSR分子连锁图谱的构建.山西农业大学学报(自然科学版)29,315-319.
[3]卢庆善,孙毅,等.(2005).杂交高粱遗传改良.北京,中国农业科学技术出版社.2005.
[4]王海莲,管延安,张华文,杨延兵,秦岭.(2009).高粱基因组学研究进展.基因组学与应用生物学18, 549-556.
[5]徐吉臣,Weerasuriya,Y.,Bennetzen,J.(2001 ).高粱(Scwg/zww Z>i'co/or)分子图谱的构建及寄生草CSrfgfl a说汝⑷萌发诱导物基因的定位.遗传学报28, 870-876.
[6]朱梦娇.(2014).高粱半扫帚性状的遗传分析与定位.中国农业大学硕士学位论文.
[7]赵姝华,李钢呈,邹剑秋,Folkertsma,R., Hash, C. (2005).高粱分子遗传图谱的构建.杂粮作物 25,11-13.
[8]Adugna, A. (2014). Analysis of in situ persity and population structure in Ethiopian cultivatedSorghum bicolor (L.) landraces using phenotypic traits and SSR markers. SpringerPlus 3,212.
[9]Alba,R.,Kelmenson,P., Cordonnier-Pratt, M., Pratt, L. (2000). The phytochrome gene family intomato and the rapid differential evolution of this family in angiosperms. Mol Biol Evol 17,362-373.
[10]Beall, F.,Morgan, P., Mander, L,Miller, F.,and Babb,K. (1991). Genetic regulation ofdevelopment in Sorghum bicolor V. The ma/ allele results in gibberellin enrichment. Plant Physiol95,116-125.
[11]Berenji, J., Dahlberg, J” Sikora, V” Latkovi, D. (2011). Origin, history, morphology, production,improvement and utilization of broomcom [Sorghum bicolor (L.) Moench] in Serbia. EconomicBotany 65,190-208.
[12]Bhattramakki, D.,Dong,J., Chhabra, A” Hart, G. (2000). An integrated SSR and RFLP linkagemap of Sorghum bicolor (L.) Moench. Genome.43,988—1002.
[13]Bhosale, S_, Stich, B?,Rattunde, H., Weltzien, E.,Haussmann, B.,Hash, C” Ramu, P., Cuevas, H.’Paterson, A.’ Melchinger, A., Parzies, H. (2012). Association analysis of photoperiodic floweringtime genes in west and central African sorghum [Sorghum bicolor (L.) Moench]. BMC Plant Biol12,32.
[14]Bradbury, P., Zhang, Z.,Kroon, D., Casstevens, T.,Ramdoss, Y.,Buckler, E. (2007). TASSEL:Software for association mapping of complex traits in perse samples. Bioinformatics 23,2633-2635.
[15]Brown, S.,Hopkins, M” Mitchell, S.,Senior, M., Wang, T?,Duncan, R.,Gonzalez-Candelas, F.,Kresovich,S. (1996). Multiple methods for the identification of polymorphic simple sequencerepeats (SSRs) in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 93,190~198.
[16]Bouchet, S.,Pot, D.,Deu, M., Rami, J., Billot, C.,Perrier, X.,Rivallan, R.,Gardes, L.,Xia,L.’Wenzl, P., Kilian, A.’ Glaszmann, J. (2012). Genetic structure, linkage disequilibrium andsignature of selection in Sorghum: lessons from physically anchored DArT markers. PLoS One 7,e33470.
[17]Casa, A.,Mitchell, S., Hamblin, M.,Sun, H.,Bowers, J.,Paterson, A., Aquadro, C., Kresovich, S.(2005). persity and selection in sorghum: simultaneous analyses using simple sequence repeats.Theor Appl Genet 111, 23-30.
[18]Casa, A” Mitchell, S.,Jensen, J., Hamblin, M.,Paterson, A., Aquadro, C.,Kresovich, S. (2006),Evidence for a selective sweep on chromosome 1 of cultivated sorghum. Crop Sci 46, S27-S40.
[19]Condit, R.,Hubbell, S. (1991). Abundance and DNA sequence of two-base repeat regions intropical tree genomes. Genome 34, 66-71.
[20]Chantereau, J” Trouche, G.,Rami, J., Deu, M.,Barro,C.,Grivet,L. (2001). RFLP mapping ofQTLs for photoperiod response in tropical sorghum. Euphytica 120,183—194.
[21]Childs,K.,Pratt, L.,Morgan, P, (1991). Genetic regulation of development in Sorghum bicolor. VI.The mus allele results in abnormal phytochrome physiology. Plant Physiol 97,714-719.
[22]Childs, K., Cordoimier-Pratt, M., Pratt, L. Morgan, P. (1992). Genetic regulation of developmentin Sorghum bicolor. VII, flowering mutant lacks a phytochrome that predominates in greentissue. Plant Physiol 99,765-770.
[23]Childs, K.,Lu,J.,Mullet, J., Morgan, P. (1995). Genetic regulation of development in Sorghumbicolor, X. Greatly attenuated photoperiod sensitivity in a phytochrome-deficient sorghumpossessing a biological clock but lacking a red light-high irradiance response. Plant Physiol 108,345-351.
[24]Childs, K.,Miller, F” Cordonnier-Pratt, M” Pratt, L., Morgan,P., Mullet,J. (1997). The sorghumphotoperiod sensitivity gene,Mas, encodes a phytochrome B. Plant Physiol 113,611—619.
[25]Crasta, O., Xu,W., Rosenow, D.,Mullet,J.,Nguyen, H. (1999). Mapping of post-floweringdrought resistance traits in grain sorghum: association between QTLs influencing prematuresenescence and maturity. Mol Gen Genet 262, 579-588.
[26]Defelice, M. (2006). Shattercane, Sorghum bicolor (L.) Moench ssp. drummondii (Neesex Steud.)de Wet ex Davidse - Black sheep of the family. Weed Technol 20, 1076-1083.
[27]Deu, M.,Rattunde, F.,Chantereau,J. (2006). A global view of genetic persity in cultivatedsorghums using a core collection. Genome 49,168-180.
[28]Doggett, H. (1988). Sorghum. Longman Scientific & Technical,London.
[29]El Mannaij Y” Shehzad,T.,Okuno,K. (2012). Mapping of QTLs underlying flowering time insorghum [Sorghum bicolor (L.) Moench]. Breed Sci 62,151-159.
[30]Feltus, R, Hart, G.,Schertz, K., Casa, A., Kresovich, S., Abraham, S., Klein, P., Brown, P.,Paterson, A. (2006). Alignment of genetic maps and QTLs between inter- and intra-specificsorghum populations. Theor Appl Genet 112, 1295-1305.
[31]Folkertsma, R.,Rattunde, H.,Chandra, S.,Raju, G.,Hash, C. (2005). The pattern of geneticpersity of Guinea-race Sorghum bicolor (L.) Moench landraces as revealed with SSR markers.Theor Appl Genet 111, 399-409.
[32]Foster, K., Miller, F?,Childs, K.,Morgan, P. (1994). Genetic regulation of development in Sorghumbicolor. VIII. Shoot growth, tillering, flowering, gibberellin biosynthesis, and phytochrome levelsare differentially affected by dosage of the maallele. Plant Physiol 105,941-948.
[33]Hamblin, M.,Mitchell, S.,White, G., Gallego, J., Kukatla, R.,Wing, R.,Paterson, A., Kresovich, S.(2004). Comparative population genetics of the panicoid grasses: sequence polymorphism, linkagedisequilibrium and selection in a perse sample of Sorghum bicolor. Genetics 167,471-483.
[34]Hamblin, M., Casa, A.,Sun, H” Murray, S.,Paterson, A., Aquadro, C., Kresovich, S. (2006)Challenges of detecting directional selection after a bottleneck: lessons from Sorghum bicolor.Genetics 173,953-964.
[35]Harlan, J, and De Wet, J. (1972). A simplified classification of cultivated sorghum. Crop Sci 12,172-176.
[36]Hart, G., Schertz, K., Peng, Y.,Syed, N. (2001). Genetic mapping of Sorghum bicolor (L.) MoenchQTLs that control variation in tillering and other morphological characters. Theor Appl Genet 103,1232-1242.
[37]Huang, X.,Wei, X” Sang, T., Zhao, Q.,Feng, Q.,Zhao, Y.,Li, C. et al. (2010). Genome-wideassociation studies of 14 agronomic traits in rice landraces. Nat Genet 42,961-967.
[38]Huang, X” Zhao,Y.,Wei, X.,Li, C.,Wang, A.,Zhao, Q.,Li, W. et al. (2012). Genome-wideassociation study of flowering time and grain yield traits in a worldwide collection of ricegermplasm. Nat Genet 44, 32-39.
[39]Hulbert, S.,Richte, T.,Axtell, J. et al. (1990). Genetic mapping and characterization of sorghumand related crops by means of maize DNA probes. Proc Natl Acad Sci USA 87,4251 -4255
[40]Jiang, S.,Ma,Z” Vanitha,J.,Ramachandrari, S. (2013). Genetic variation and expression persitybetween grain and sweet sorghum lines. BMC Genomics 14,18.
基因工程硕士论文参考文献二
[1]黄燕红,才宏伟,王象坤.亚洲栽培稻分散起源的研究.植物遗传资源学报,2003, 4:185-190.
[2]李亚莉,杨晓曦,赵丰萍,许明辉.云南元江普通野生稻(OyzaGriff.)群体籼搜分化的SSR分析.中国水稻科学,2006,1: 137-140.
[3]李显然.普通野生稻BAC文库的构建和水稻基因组中保守非编码区的研究.中国农业大学博士学位论文.北京:中国农业大学,2008.
[4]青秀玲,白永飞,韩兴国.植物锥形繁殖体结构及其适应.生态学报,2007, 27: 2547-2553.
[5]孙传清.普通野生稻和栽培稻核DNA、mtDNA、cpDNA的遗传分化.中国农业大学博士学位论文.北京:中国农业大学,1996.
[6]孙传清,王象坤,李自超.从普通野生稻DNA的籼梗分化看亚洲栽培稻的起源和演化.1998,1: 21-29.
[7]王象坤,孙传清,才宏伟等.中国稻作起源与演化.科学通报,43: 2354-2363.
[8]王象坤,孙传清.中国栽培稻起源与演化专集.北京:中国农业大学出版社,1997.
[9]肖河,巩迎军,张俊芝,等.水稻芒长及其分布特征相关QTL的定位.上海师范大学学报:自然科学版,2008,37: 606-612.
[10]严文明.略论中国栽培稻的起源与传播.1989, 2: 51-54.
[11]严文明.中国稻作农业的起源.农业考古,1982,1: 72-83.
[12]游修龄.从河姆渡出土稻谷试论栽培稻的起源分化与传播.作物学报,1975,5:1-10.
[13]张文绪.中国古稻性状的时位异象与栽培水稻的起源演化轨迹.农业考古,2000, 1: 23-26.
[14]Asano K, Ymnasaki M,Takimo S,et al. Artificial selection for a green revolution gene duringjaponica rice domestication. Proc Natl Acad Sci USA,2011, 108; 11034-9.
[15]Blum A. Photosynthesis and transpiration in leaves and ears of wheat and barley varieties. J ExpBot,1985, 36: 432-440.
[16]Bovill WD,Home M,Herde D,Davis M,WUdermuth GB, Sutherland MW. Pyramiding QTLincreases seedling resistance to crown rot (Fusarium pseudograminearum) of wheat {Triticumaestivum), Theor Appl Genet, 2010,121: 127-36.
[17]Bozzini A, Giorgi B. Genetic analysis of tetraploid and hexaploid wheat by utilization ofmonopentraploid hybrids. Theor Appl Genet, 1971,41: 67-74.
[18]Bramsiepe J,Wester K,Weinl C,Roodbarkelari F, Kasili R, Larkin JC,Hulskamp M,SchnittgerA. Endoreplication controls cell fate maintenance. PLoS Genet,2010,6: el000996.
[19]Brown PJ, Upadyayula N, Mahone GS, Tian F,Bradbury PJ,Myles S,et al. Distinct geneticarchitectures for male and female inflorescence traits of maize. PLoS Genet, 2011,7: el002383.
[20]Buckler ES, Holland J B, Bradbury P J, Acharya CB,Brown PJ,Browne C, et al. The geneticarchitecture of maize flowering time. Science, 2009,325: 714-8.
[21]Cai HW, Morishima H. QTL clusters reflect character associations in wild and cultivated rice.Theor Appl Genet,2002,104: 1217-28.
[22]Chen S,Yang Y,Shi W, Ji Q, He F,Zhang Z,et al. Badh2, encoding betaine aldehydedehydrogenase, inhibits the biosynthesis of 2-acetyl-1 -pyrroline, a major component in ricefragrance. Plant Cell, 2008,20: 1850-61.
[23]Darwin C. On the origin of species by means of natural selection. London: Murray J, 1859.
[24]Darwin C. The variation of animals and plants under domestication. New York: Judd O &company, 1868.
[25]Dewitte W, Riou-Khamlichi C,Scofield S,Healy JM, Jacqmard A,Kilby NJ, et al. Altered cellcycle distribution, hyperplasia, and inhibited differentiation in Arabidopsis caused by the D-typecyclin CYCD3. Plant Cell, 2003,15: 79-92.
[26]Dewitte W,Scofield S,Alcasabas AA, Maughan SC? Menges M,Braun N,et al. ArabidopsisCYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokininresponses. Proc Natl Acad Sci USA, 2007,104: 14537-42.
[27]Diamond J. Evolution,consequences and future of plant and animal domestication. Nature, 2002,418: 700-7.
[28]Dirzo R,Raven PH. Global state of biopersity and loss. Annu Rev Env Resour, 2003,28:137-67.
[29]Doebley JR The genetics of maize evolution. Annu Rev Genet, 2004,38: 37-59.
[30]Doebley JF, Gaut BS, Smith BD. The molecular genetics of crop domestication. Cell, 2006,127:1309-21.
[31]Elbaum R,Zaltzman L,Buigert I,Fratzl P. The role of wheat awns in the seed dispersal unit.Science, 2007,316: 884-6.
[32]Eyre-Walker A,Gaut RL, Hilton H,Feldman DL, Gaut BS. Investigation of the bottleneckleading to the domestication of maize. Proc Natl Acad Sci USA, 1998,95: 4441-6.
[33]Fan C,Xing Y, Mao H,Lu T,Han B,Xu C,et al. GS3, a major QTL for grain length and weightand minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein.Theor Appl Genet, 2006,112: 1164-71.
[34]Flannery KV. The domestication of plants and animals. London: Ducksworth, 1969.
[35]Fu Q,Zhang P, Tan L,Zhu Z,Ma D,Fu Y,et al. Analysis of QTLs for yield-related traits inYuanjiang common wild rice (Oryza ruflpogon Griff.). J Genet Genomics, 2010,37:147-57.
[36]Fuller DQ. Contrasting patterns in crop domestication and domestication rates: recentarchaeobotanical insights from the old world. Annu Bot,2007,100: 903-24.
[37]Fuller DQ, Qin L. Declining oaks, increasing artistry, and cultivating rice: the environmental andsocial context of the emergence of fanning in the Lower Yangtze Region. Environ Archaeol,2010,15: 139-59.
[38]Fuller DQ, Sato YI, Castillo C,Qin L,Weisskopf AR, Kingwell-Banham EJ,et al. Consilienceof genetics and archaeobotany in the entangled history of rice. Archaeol Anthrop Sci, 2010,2:115-31.
[39]Gan Y,Liu C, Yu H, Broun P. Integration of cytokinin and gibberellin signalling by Arabidopsistranscription factors GIS, ZFP8 and GIS2 in the regulation of epidermal cell fate. Development,2007, 134: 2073-81.
[40]Ganier LK and Dajoz I. Evolutionary significance of awn length variation in a clonal grass offire-prone savannas. Ecology, 2001,2: 1720-1733.
基因工程硕士论文参考文献三
[1]Brackett B G, Baranska W, Sawicki W,et al. Uptake of heterologous genome by mammalianspermatozoa and its transfer to ova through fertilization. Proc Natl Acad Sci USA,1971,68(2):353-357.
[2]Jaenisch R, Mintz B. Simian virus 40 DNA sequences in DNA of healthy adult mice derived frompreimp antation blastocysts injected with viral DNA. Proc Natl Acad Sci USA, 1974,71 (4): 1250-1254.
[3]Palmiter R D, Brinster R L, Hammer R E, et al. Dramatic growth of mice that develop from eggsmicroinjected with metallothionein-growth hormone fusion genes. Nature, 1982,300(5893):611-615.
[4]李宁.动物克隆与基因组编辑.中国农业大学出版社,2012.
[5]Hammer R E, Pursel V G, Rexroad C J, et al. Production of transgenic rabbits, sheep and pigs bymicroinjection. Nature, 1985,315(6021):680-683
[6]杜伟,崔海信,王琰,等.精子载体法制备转基因动物的研究进展.生物技术通报,2012(12):13-18.
[7]Maione B,Lavitrano M, Spadafora C, et al. Sperm-mediated gene transfer in mice. Mol ReprodDev, 1998,50(4):406-409.
[8]Lavitrano M, Bacci M L, Forni M, et al. Efficient production by sperm-mediated gene transfer ofhuman decay accelerating factor (hDAF) transgenic pigs for xenotransplantation. Proc Matl Acad SciUSA, 2002,99(22):14230-14235.
[9]Sperandio S, Lulli V,Bacci M L, et al. Sperm - mediated DNA transfer in bovine and swinespecies. Animal biotechnology, 1996,7(1):59-77.
[10]武坚,刘明军,李文蓉,等.精子载体介导法生产转基因绵羊的研究.草食家畜,2001(S2):186-190.
[11]Pfeifer A, Kessler T, Yang M, et al. Transduction of liver cells by lentiviral vectors: analysis inliving animals by fluorescence imaging. Mol Ther,2001,3(3):319-322.
[12]Lois C, Hong E J, Pease S, et al. Germline transmission and tissue-specific expression oftransgenes delivered by lentiviral vectors. Science, 2002,295(5556):868-872.
[13]Hofmann A, Kessler B, Ewerling S,et al. Efficient transgenesis in farm animals by lentiviralvectors. EMBO Rep, 2003,4( 11): 1054-1060.
[14]Hofmann A, Zakhartchenko V, Weppert M, et al. Generation of transgenic cattle by lentiviral genetransfer into oocytes’ Biol Reprod, 2004,71 (2):405-409
[15]Lillico S G, Sherman A, McGrew M J,et al. Oviduct-specific expression of two therapeuticproteins in transgenic hens. Proc Natl Acad Sci USA,2007,104(6): 1771-1776.
[16]Lyall J,Irvine R M, Sherman A, et al. Suppression of avian influenza transmission in geneticallymodified chickens. Science,2011,331(6014):223-226.
[17]Golding M C, Long C R,Carmell M A, et al. Suppression of prion protein in livestock by RNAinterference. Proc Natl Acad Sci USA, 2006,103(14):5285-5290.
[18]杨春荣,窦忠英.利用干细胞生产转基因动物研究进展.西北农林科技大学学报(自然科学版),2006(07):37-40.
[19]Hai T, Teng F,Guo R, et al. One-step generation of knockout pigs by zygote injection ofCRISPR/Cas system. Cell Res, 2014,24(3):372-375.
[20]Hongbing H, Yonghe M A, Tao W, et al. One-step generation of myostatin gene knockout sheepvia the CRISPR/Cas9 system. Frontiers of Agricultural Science and Engineering, 2014,1(1):2-5.
[21]Swanson M E,Martin M J, O'Donnell J K, et al. Production of functional human hemoglobin intransgenic swine. Biotechnology (N Y),1992,10(5):557-559.
[22]Zbikowska H M,Soukhareva N, Behnam R, et al. Uromodulin promoter directs high-levelexpression of biologically active human alpha 1-antitrypsin into mouse urine. Biochem J, 2002,365(Pt1):7-11.
[23]Golovan S P,Hayes M A, Phillips J P,et al. Transgenic mice expressing bacterial phytase as amodel for phosphorus pollution control. Nat Biotechnol, 2001,19(5):429-433.
[24]Rapp J C, Harvey A J, Speksnijder G L, et al. Biologically active human interferon alpha-2bproduced in the egg white of transgenic hens. Transgenic Res, 2003,12(5):569-575.
[25]Wright G, Carver A, Cottom D, et al. High level expression of active human alpha-1 -antitrypsin inthe milk of transgenic sheep. Biotechnology (N Y), 1991,9(9):830-834.
[26]Li S, Ip D T, Lin H Q, et al. High-level expression of functional recombinant humanbutyrylcholinesterase in silkworm larvae by Bac-to-Bac system. Chem Biol Interact,2010,187(1-3):101-105.
[27]刘英,张瑞君,伍志伟,等.转基因疾病动物模型的研究进展.动物医学进展,2006(12):44-49.
[28]Kragh P M, Nielsen A L, Li J, et al. Hemizygous minipigs produced by random gene insertion andhandmade cloning express the Alzheimer's disease-causing dominant mutation APPsw. Transgenic Res,2009,18(4):545-558.
[29]Lee M K, Stirling W, Xu Y, et al. Human alpha-synuclein-harboring familial Parkinson'sdisease-linked Ala-53 Thr mutation causes neurodegenerative disease with alpha-synucleinaggregation in transgenic mice. Proc Natl Acad Sci USA, 2002,99(13):8968-8973.
[30]Kim C M,Koike K, Saito I, et al. HBx gene of hepatitis B virus induces liver cancer in transgenicmice. Nature, 1991,3 51(6324):317-320.
[31]Wongsrikeao P, Saenz D,Rinkoski T, et al. Antiviral restriction factor transgenesis in the domesticcat. Nat Methods, 2011,8(10):853-859.
[32]Shafran D, Kodish E, Tzakis A. Organ shortage: the greatest challenge facing transplant medicine.World J Surg, 2014,38(7):1650-1657.
[33]van der Windt D J, Bottino R,Casu A,et al. Long-term controlled normoglycemia in diabeticnon-human primates after transplantation with hCD46 transgenic porcine islets. Am J Transplant,2009,9(12):2716-2726.
[34]杜文华,赵天福,朱勇.蜘蛛丝蛋白基因工程的研究进展.蚕业科学,2011(05):892-898.
[35]Kluge J A, Rabotyagova O, Leisk G G, et al. Spider silks and their applications. Trends Biotechnol,2008,26(5):244-251.
[36]John D C,Watson R, Kind A J, et al. Expression of an engineered form of recombinantprocollagen in mouse milk. Nat Biotechnol, 1999,17(4):385-389.
[37]Teule F, Miao Y G, Sohn B H, et al. Silkworms transformed with chimeric silkworm/spider silkgenes spin composite silk fibers with improved mechanical properties. Proc Natl Acad Sci USA,2012,109(3):923-928.
[38]Karatzas C M, Zhou J F, Huang Y, et al. Production of recombinant spider silk (BioSteel) in themilk of transgenic animals. Transgenic Res, 1999,8:476-477.
[39]Chung H, Kim T Y, Lee S Y. Recent advances in production of recombinant spider silk proteins.Curr Opin Biotechnol, 2012,23(6):957-964.
[40]Zhu Z, He L, Chen S. Novel gene transfer into the fertilized eggs of gold fish (Carassius auratus L.1758). Journal of Applied Ichthyology, 1985,1(1):31-34.