电力硕士论文参考文献格式一
[1] 陈希.电网应急平台研究与建设[M].北京:中国电力出版社,2011.
[2] 陈安,陈宁,倪慧荟.现代应急管理理论与方法[M].北京:科学出版社.2009
[3] 丁道齐.降低电力系统物理脆弱性应对自然灾害和恶意攻击[J].中国电力,2009,42(6):26-31.
[4] 郝东敏,刘洪鹏,隋明.提高电力系统防御气象灾害能力的研讨[J].气象软科学,2009(1):54-59.
[5] 谢强,李杰.电力系统自然灾害的现状与对策[J].自然灾害学报,2006,15(4):126-131.
[6] 杨振宏.电网系统安全生产管理与实务[M].北京:中国电力出版社.2009.
[7] 姚建刚,肖慧耀,章健.电力安全评估与管理[M].北京:中国电力出版社.2009.
[8] 高小平.中国特色应急管理体系建设的成就和发展[M].北京:气象出版社.2005.
[9] 杨洪.关于电力应急通信体系建设的几点建议[J].电力系统通信,2009,30(6):6-8.
[10]张世翔.电力系统应对突发性灾害的应急管理机制及对策研究[J].上海电力学院学报,2009,25(2):187-191.
[11] 王强.城市电网应急指挥中心建设[M].北京:中国电力出版社,2013.
[12]张雷,张勇,赵连增.电力机动应急通信系统建设应用[J].电力系统通信,2012,33(3):40-43.
[13]杜珊三.VAST 卫星通信在电力系统中的应用分析[D].中山大学,2011.
[14]徐伟鹏,江宇.平流层通信系统在抢险救灾中的应用[J].重庆科技学院学报,自然科学版,2009,11(5):116-118,151.
[15]袁志坚.怎样才能有效做好卫星通信在电力通信中的应用[J].广东科技,2009(16):135-136.
[16]李湖生,刘铁民.突发事件应急准备体系研究进展及关键科学问题[J].中国安全生产科学技术,2009,5(6):5-10.
[17]栾凤奎,郭磊,柴高峰等.俄罗斯电力改革进程及分析[J].电力技术经济,2009,21(2):21-26.
[18]繆巍巍,郭波.新型电力应急通信系统[J].电力系统通信.2007,28(6):37-39.
[19]彭向阳,周华敏.电网冰冻灾害分析及预防对策[J].电力科学与工程,2009,25(7):16-19.
[20]沈沉,孙英云.电力应急管理中的综合预测预警技术[J].清华大学学报,2009(4):481-484.
[21]沈荣华.国外防灾救灾应急管理体制[M].北京:中国社会出版社.2010.
[22]吴安平,黎岚,余熙等.我国电力系统建立第四道防线的探讨[J].中国电力,2008, 41(9):21-24.
[23]吴昕婷.基于电力系统的自然灾害应急管理研究[J].武汉理工大学学报,2008,21(2):188-191.
[24]夏新,徐国新,康重庆.抗灾型电力系统的规划[J].电网技术,2009,33(3):1-7.
[25]余卫国.电网安全管理与安全风险管理[M].北京:中国电力出版社.2009.
[26]张乃平,夏东海.自然灾害应急管理[M].北京:中国经济出版社.2009.
[27]叶展,卫星通信低信噪比接收技术与实现[D],江苏南京,解放军理工大学,2010.
[28]胡建波,杨莘元,卢满宏。一种基于FFT的高动态扩频信号的快速捕获方法[J],遥测遥控,2004,25(6):19-24.
[29]王鹏毅。高动态扩频信号的捕获跟踪与解调[J],飞行器测控学报,2003,22(2):34-36.
[30]张伯川,张其善。高动态接收机的关键问题研究[J],电子学报,2003,31(12):1844-1846.
[31]陈大夫,高尔杨,珠江。快速傅立叶变换载波频偏估计算法[J],电路与系统学报,2006,11(2):128-136.
[32]曹巍,罗霞,李晓亮。高动态低载噪比的载波捕获技术研究[J],遥测遥控,2011,32(1):43-46.
[33]王晓湘,柯有安。高动态多普勒频率的最大似然估计器[J],北京邮电大学学报,2000,23(1):61-65.
[34]师栋锋,叶伟,贾鑫。匹配傅立叶变换及其应用[J],装备指挥技术学院学报,2005,16(3):87-90.
[35]王盛利,李士国,倪晋麟,张光义。一种新的变换—匹配傅立叶变换[J],电子学报,2001,29(3):403-405.
[36]Sascha M S , Gordon J R P . Code acquisition for LEO satellite mobilecommunication using a serial-parallel correlator with FFT for Dopplerestimation[J]. IEEE Trans on vehicular technology, 2001, 50(6):1549-1567.
[37]Candida L S, Sascha M S, Gordon J R P. A serial-parallel FFT correlator for PNcode acquisition from LEO satellites[C]. IEEE SSSTA, Sun city, South Africa,1998, 446-448.
[38]Yang.C. FFT Acquisition of Periodic, Aperiodic, Puncture, and Overlaid CodeSequences in GPS. Proc of ION GPS 2001. Salt Lake City: The Institute ofNavigation, Sept, 2001. 137-147.
[39]Viktor Przebinda. Advance GPS signal acquisition. IEEE JOURNAL ONSELECTED AREAS IN COMMUNICATIONS[J], 2000,12(2).
[40]P. M.Grant, S. M. Spangenberg. Doppler estimation for acquisition in spreadingspectrum communication systems. IEEE JOURNAL ON SELECTED AREAS INCOMMUNICATIONS[J], 1999,4(6):450-456.
电力硕士论文参考文献格式二
[1] 陈理君,杨光大等. 低噪声轮胎花纹设计原则[J]. 橡胶工业,1997(3):150-155.
[2] 陈理君,杨立等. 轮胎花纹噪声的发声机理[J]. 轮胎工业,1999(9):515-518.
[3] Maik Brinkmeier, Udo Nackenhorst. A Finite Element Approach to the Transient Dynamics ofRolling Tires with Emphasis on Rolling Noise Simulation[J]. Tire Science andTechnology,2007(3):165-182.
[4] Paul R. Donavan, Richard. Assessment of tire/pavement interaction noise under vehiclepassby test conditions using sound intensity measurement methods[J]. The Journal ofthe Acoustical Society of America,2006(4):1497-1498.
[5] J. J. Lee, A. E. Ni. Structure‐Borne Tire Noise Statistical Energy Analysis Model [J]. TireScience and Technology,1997,25(3):177-186.
[6] H. M. R. Aboutorabi, L. Kung. Application of Coupled Structural Acoustic Analysis andSensitivity Calculations to a Tire Noise Problem. Tire Science and Technology [J]. TireScience and Technology,2012,40(1):143-148.
[7] S. Fujiwara, K. Yumii. Reduction of Tire Groove Noise Using Slot Resonators [J]. TireScience and Technology,2009,37(3):207-213.
[8] 于增信,谭惠丰,杜星文. 轮胎花纹沟噪声研究进展[J]. 哈尔滨工业大学学报,2002,34(1):105-109.
[9] 王万英,靳晓雄等. 轿车轮胎噪声测试与评价方法研究[J].汽车技术,2008(9):50-53
[10] 陈理君,杨立等. 轮胎花纹噪声的控制[J]. 轮胎工业,1999(11):643-647.
[11] 陈理君,张兰红. 轮胎/路面噪声的测定及分析方法[J]. 轮胎工业,2008,28(6):338-342.
[12] 陈理君,杨立. 轮胎花纹噪声的微机仿真发声[J]. 轮胎工业,2000,20(1):16-19.
[13] 陈理君,杨立. 室内轮胎花纹噪声测量方法研究[J]. 轮胎工业,2000,22(8):461-465.
[14] 陈理君,董得义. 轮胎花纹噪声动力学分析[J]. 轮胎工业,2004,24(3):131-134.
[15] 陈理君,李晓辉等. 轮胎花纹噪声及其降噪方法[J]. 噪声与振动控制,2004(1):10-13.
[16] D. Belluzzo, F. Mancosu. New Predictive Model for the Study of Vertical Forces (up to 250Hz) Induced on the Tire Hub by Road Irregularities [J]. Tire Science andTechnology,2002,30(1):2-18.
[17] H. M. R. Aboutorabi , L. Kung . Application of Coupled Structural Acoustic Analysis andSensitivity Calculations to a Tire Noise Problem[J]. Tire Science and Technology, 2012,40(1) : 25-41.
[18] 陈理君,张艳堃等. 低噪声轮胎花纹设计原理与方法[J]. 轮胎工业,2001,21(5):270-276.
[19] 杨立,黄向宇. 计算机噪声仿真的软硬件设计方法[J]. 声学技术,1998,17(4):148-150.
[20] 陈理君,钟克红. 轮胎花纹噪声仿真与优化系统软件设计[J]. 轮胎工业,2000,20(4):643-647.
[21] 陈理君,池宏军. 室外轮胎/路面噪声拖车测试系统设计[J]. 橡胶科技市场,2008(18):276-278.
[22] 陈理君,孙波波等. 道路/轮胎噪声研究的现状与发展[J]. 轮胎工业,2011(9):519-524.
[23] 陈理君,魏波涛等. 非小块轮胎花纹噪声仿真实验模型[J]. 轮胎工业,2006,26(12):718-722.
[24] 陈霞. 轮胎噪声分析评价及试验研究[D]. 武汉:武汉理工大学,2012.
[25] 刘方磊. 轿车轮胎噪声仿真和测试技术的研究[D]. 武汉:武汉理工大学,2012.
[26] 陈理君,刘方磊等. 轮胎噪声实测谱与仿真谱的解读[J]. 轮胎工业,2012(12):454-456.
[27] 陈理君,李晓辉等. 低噪声轮胎标准谱线及其频带转换[J]. 轮胎工业,2004,24(4):195-198.
[28] 杨光大,陈理君. 轮胎花纹噪声仿真频谱评判法[J]. 轮胎工业,1998,18(3):145-147.
[29] Maik Brinkmeier , Udo Nackenhorst. An approach for large-scale gyroscopic eigenvalueproblems with application to high-frequency response of rolling tires [J] ComputationalMechanics, 2008, 41 (4):503-515.
[30] Seong-rae Kim , Ki-deug Sung. Cavity noise sensitivity analysis of tire contour designfactors and application of contour optimization methodology[J]Journal of Central SouthUniversity, 2012, 19 (8):2386-2393.
[31] D. Berckmans, P. Kindt . Evaluation of substitution monopole models for tire noise soundsynthesis [J] Mechanical Systems and Signal Processing, 2009, 24 (1):240-255.
[32] Tatsuo Fujikawa , Hiroshi Koike. Definition of road roughness parameters for tire vibrationnoise control [J] Applied Acoustics, 2004, 66 (5):501-512.
[33] 陈理君,林海军等. 轮胎花纹噪声的综合评判方法[J]. 轮胎工业,2000,20(3):140-144.
[34] 陈理君,陈义庆等. TNS/ODS 系列低噪声轮胎花纹仿真分析与优化软件的应用[J]. 橡胶科技市场,2010(1):22-24.
[35] 陈理君,李海涛等. 轮胎花纹噪声仿真与优化系统软件设计[J]. 轮胎工业,2000,20(4):199-203.
[36] 陈霞,李志东等. 轮胎噪声室内测试系统及双功能消声室的设计[J]. 橡胶工业,2009,58(3):182-188.
[37] 朱振华,何豪民等. 轮胎花纹噪声仿真与实测分析[J]. 轮胎工业,2011,31(7):432-436.
[38] 陈理君,吴灿等. 从实测噪声谱提取非花纹噪声谱的方法[J]. 现代橡胶技术,2010(1):25-28.
[39] 傅建玲. 道路/轮胎噪声实时检测分析仪的研制[D]. 武汉:武汉理工大学,2008.
[40] 陈理君,邹武等. 低噪声轮胎花纹的周期性和节距排列辨识[J]. 轮胎工业,2006,26(7):396-399.
电力硕士论文参考文献格式三
[1] 刘慧媛. 能源, 环境与区域经济增长研究[D]. 上海:上海交通大学, 2013.
[2] European Commission. New E R A. for Electricity in Europe. DistributedGeneration: Key Issues, Challenges and Proposed Solutions European Commission,EUR 20901, 2003[R]. ISBN 92-894-6262-0.
[3] 刘振亚. 建设坚强智能电网 推动能源安全高效清洁发展[J]. 中国电力企业管理, 2013, 19: 12-14.
[4] Schmid J, Strauss P, Hatziargyriou N, et al. Towards smart power networks:lessons learned from European research FP5 projects[J]. European CommissionDirectorate-General for Research Information and Communication Unit, 2005:16-19.
[5] Bose B K. Global energy scenario and impact of power electronics in 21stcentury[J]. Industrial Electronics, IEEE Transactions on, 2013, 60(7): 2638-2651.
[6] 程永明. 野田内阁的能源对策及日本能源利用展望[J]. 现代日本经济, 2012, 2:l1-l7.
[7] 横山明彦. よりスマートなグリッドの構築に向けて (II)[J]. 電気学会誌=The journal of the Institute of Electrical Engineers of Japan, 2010, 130(3):163-167.
[8] 高木喜久雄. 災害に強い電力供給インフラを実現するスマートグリッド技術[J]. 東芝レビュー, 2011, 66(8): 8-12.
[9] 刘振亚. 建设坚强智能电网推动能源安全高效清洁发展——在 2013 国际智能电网论坛上的主旨发言[J]. 国家电网, 2013 (10): 22-27.
[10] DOE U S. Grid 2030: A national vision for electricity's second 100 years[J]. USDOE Report, 2003: 17-21.
[11] 伊藤正治, 米倉秀徳, 今村博. NEDO 再生可能エネルギー技術白書 風力発電の技術の現状とロードマップ (特集 わが国の風力発電導入状況と今後に向けた期待)[J]. 風力エネルギー, 2010, 34(3): 18-26.
[12] McCollum D, Yang C. Achieving deep reductions in US transport greenhouse gasemissions: Scenario analysis and policy implications[J]. Energy Policy, 2009,37(12): 5580-5596.
[13] 宋成华. 中国新能源的开发现状, 问题与对策[J]. 学术交流, 2010, 3: 57-60.
[14] 白晓民. 智能电网技术标准体系研究进展[J]. 电气时代, 2012, 5: 37-39.
[15] 竺伟, 陈伯时, 周鹤良, 等. 单元串联式多电平高压变频器的起源, 现状和展望[J]. 电气传动, 2006, 36(6): 3-7.
[16] 肖白, 张屹, 穆钢, 等. 配电网电压等级的合理配置[J]. 东北电力大学学报,2009, 29(2): 5-11.
[17] 徐甫荣, 陈辉明. 高压变频调速技术应用现状与发展趋势[J]. 变频器世界,2007, 4: 61-67.
[18] Wang J, Huang A, Sung W, et al. Development of 15-kV SiC IGBTs and TheirImpact on Utility Applications[J]. IEEE Industrial Electronics Magazine, 2009,3(2): 16-23.
[19] 谢国政, 廖学理. 高压变频调速节能技术的应用及发展趋势[J]. 云南电力装备制造业振兴与创新论坛论文集, 2007:108-112.
[20] 莫畏, 黄兴华. 高压变频技术的发展趋势[J]. 电气时代, 2004 (11): 56-59.
[21] Kouro S, Malinowski M, Gopakumar K, et al. Recent advances and industrialapplications of multilevel converters[J]. Industrial Electronics, IEEE Transactionson, 2010, 57(8): 2553-2580.
[22] Iov F, Blaabjerg F. UNIFLEX-PM. Advanced power converters for universal andflexible power management in future electricity network–Converter applications infuture European electricity network[J]. Deliverable D2, 2007, 1: 171.
[23] Millán J, Godignon P, Perpina X, et al. A survey of wide bandgap powersemiconductor devices[J]. Power Electronics, IEEE Transactions on, 2014, 29(5):2155-2163.
[24] Rodriguez J, Lai J S, Peng F Z. Multilevel inverters: a survey of topologies,controls, and applications[J]. Industrial Electronics, IEEE Transactions on, 2002,49(4): 724-738.
[25] Rizzo S, Zargari N. Medium voltage drives: What does the future hold?[C]//PowerElectronics and Motion Control Conference, 2004. IPEMC 2004. The 4thInternational. IEEE, 2004, 1: 82-89.
[26] Klug R D, Klaassen N. High power medium voltage drives-innovations, portfolio,trends[C]//Power Electronics and Applications, 2005 European Conference on.IEEE, 2005: 10 pp.-P. 10.
[27] Wu B. High-power converters and AC drives[M]. John Wiley & Sons, 2006:10-13.
[28] Franquelo L G, Rodriguez J, Leon J I, et al. The age of multilevel convertersarrives[J]. Industrial Electronics Magazine, IEEE, 2008, 2(2): 28-39.
[29] Rodriguez J, Wu B, Bernet S, et al. Design and evaluation criteria for high powerdrives[C]//Industry Applications Society Annual Meeting, 2008. IAS'08. IEEE.IEEE, 2008: 1-9.
[30] Rodriguez J, Franquelo L G, Kouro S, et al. Multilevel converters: An enablingtechnology for high-power applications[J]. Proceedings of the IEEE, 2009, 97(11):1786-1817.
[31] Bose B K. Power electronics and motor drives recent progress and perspective[J].Industrial Electronics, IEEE Transactions on, 2009, 56(2): 581-588.
[32] W. McMurray. Fast response stepped-wave switching power converter circuit[P].U.S. Patent 3 581 212, May 25, 1971.
[33] J. A. Dickerson and G. H. Ottaway. Transformerless power supply with line to loadisolation[P]. U.S. Patent 3 596 369,Aug. 3, 1971.
[34] R. H. Baker. High-voltage converter circuit[P]. U.S. Patent 4 203 151, May 13,1980.
[35] R. H. Baker. Bridge converter circuit[P]. U.S. Patent 4 270 163, May 26, 1981.
[36] Nabae A, Takahashi I, Akagi H. A new neutral-point-clamped PWM inverter[J].IndustryApplications, IEEE Transactions on, 1981 (5): 518-523.
[37] Marchesoni M, Mazzucchelli M, Tenconi S. A non conventional power converterfor plasma stabilization[C]//Power Electronics Specialists Conference, 1988.PESC'88 Record., 19th Annual IEEE. IEEE, 1988: 122-129.
[38] Hammond P W. A new approach to enhance power quality for medium voltagedrives[C]//Petroleum and Chemical Industry Conference, 1995. Record ofConference Papers., Industry Applications Society 42nd Annual. IEEE, 1995:231-235.
[39] Rodríguez J, Bernet S, Wu B, et al. Multilevel voltage-source-converter topologiesfor industrial medium-voltage drives[J]. Industrial Electronics, IEEE Transactionson, 2007, 54(6): 2930-2945.
[40] Bifaretti S, Zanchetta P, Watson A, et al. Advanced power electronic conversionand control system for universal and flexible power management[J]. Smart Grid,IEEE Transactions on, 2011, 2(2): 231-243.