材料工程硕士论文参考文献格式一
[1] Morisaki G., Sato T. Kikuchi H. High density metal core printed circuit boards[J]. CircuitWorld, 1981, 8(1): 15-17
[2] 金荣涛.电解铜箔产业发展趋势[J].印制电路信息,2003,(2):22-24.
[3] Holden H. PWB build-up technologies: Smaller, thinner and lighter[J]. Circuit World,1997,23(2): 14-17
[4] Chiang S.K , DiFranco D.F , Pucci D.G. High strength, low profile copper foil forhighperformance PCBS[J]. Circuit World, 1995, 21(3): 56-59
[5] 赵玲艳. 锂离子电池用铜箔的应用与发展现状[J].铜业工程,2007,(4):68-71
[6] 祝大同.我国覆铜板业的发展与展望[J].绝缘材料通讯,2000,(1):21-24.
[7] 金荣涛. 电解铜箔生产与技术讲座(一) [J]. 覆铜板资讯, 2005, (2): 30~35.
[8] 辜信实. 挠性覆铜板用铜箔[J]. 覆铜板资讯, 2004(2): 42-46.
[9] 黄洁.铜箔的生产技术及发展趋向[J].铜业工程,2003,(2):83-84.
[10] 金荣涛.电解铜箔产业发展与分析[J].印制电路信息,2004,,39(12):17-20.
[11] 王平,袁智斌.我国电解铜箔未来发展方向的思考[J].铜箔工程,2009,(2)25-27
[12] 葛菁. PCB 用铜箔市场现状与展望[J]. 印制电路信息, 2001, 8(2): 3-7
[13] 石晨. 电解铜箔制造技术[J]. 印制电路信息, 2003, 10(1): 22-24
[14] 祝大同. 台湾印制电路板用电解铜箔的现状与发展[J]. 有色金属, 2000, (2): 8~11.
[15] 覃奇贤 郭鹤桐 刘淑兰等,电镀原理与工艺,第二版,天津,天津科学技术出版社,1993,1.
[16] 李鸿年,张绍恭,张炳乾等,实用电镀工艺,北京,国防工业出版社,1990,1-2.
[17] 章葆澄,电镀工业学,北京,北京航空航天大学出版社,1993,8-10.
[18] 吴红兵, 昌殊. 溶铜过程的基本原理[J]. 印制电路信息, 2003, (5): 14~18.
[19] J.LI, P.A.KOHL. The deposition characteristics of accelerated nonformaldehyde electrolesscopper plating[J].Electrochimica Acta, 2004, 49(11): 1789~1795.
[20] Ye-Kun Lee, Thomas.J.O.Keefe. Evaluating and Monitoring Nucleation and Growth inCopper Foil [J]. Journal of Minerals, Metals and Materials Society,2002,(4):37-41
[21] 金荣涛. 电解铜箔生产与技术讲座(四) (3)[J]. 覆铜板资讯, 2006, (4): 26~39.
[22] 李文康.电解铜箔制造技术探讨[J].上海有色金属,2003,26(l):17-21
[23] 郑衍年.电解铜箔表面处理工艺与结晶形态 [J]. 铜箔与基材,2004,10:14-16
[24]Bergstresser Tad,Poutasse Charles A.Laminate for multi-layer printed circuit:US, 6268070[P].2001-07-31.[25] 蔡积庆.高密度超精细线路印制板用铜箔[J].印制电路信息,2005,(6):36~40.
[26] 王阿红.应用于 HDI/BUM 技术领域的超薄铜箔[J].铜箔与基材,2005,(3),29~34.
[27] 黄崛起.载体超薄铜箔的制备及其剥离层形成过程电化学机理研究 [D].赣州:江西理工大学.2012.
[28] 邓庚凤,何桂荣,黄崛起.超薄铜箔的制备工艺研究[J].有色金属,2014,2:50-52
[29] 郭炳琨,等. 锂离子电池[M]. 湖南: 中南大学出版社, 2002. 2.
[30] 牛慧贤. 铜箔在锂离子电池中的应用与发展现状[J]. 稀有金属,2005,29(6):898-902
[31] Kodaira M, Sasaki H. Copper foil for, e.g. lithium ion secondary battery, has fine particlelayer which consists of nickel and silicon, formed on the surface of copper-alloy foilcontaining nickel and silicon in specified amounts [P]. JP:2009215604-A, 2009-09-24.
[32] 大冢英雄等. 电解铜箔及二次电池集电体用电解铜箔[P]. 中国: CN 1480563A.
[33] A.Damjanovic, M.Paunovic, J.OM.Bockris, J. Electroanal. Chem, 1965, 9:93.[34] S. Nageswar, Electrodeposition Surf. Treat, 1975, 3: 195.
[35] 辜敏,黄令,杨防祖等.搅拌条件下电流密度对铜镀层的织构和表面形貌的影响[J].应用化学,2002,19(3):280-284.
[36] 陈延禧.电解工程[M].天津:天津科学技术出版社,1993:358-361.
[37] 陈少华,鲁道荣,李学良等,脉冲电解制备纯铜的工艺条件[J]. 有色金属,2004,56(3):41~44
[38] 吕欣蕊. 电沉积铜箔的工艺参数和拉伸性能研究 [D].天津:天津大学.2010.
[39] 霍栓成. 镀铜[M]. 北京: 化学工业出版社, 2007:77-82
[40] 侯慧芬.氯化物溶液电解过程中钻阴极沉积物的结构和表面缺陷[J].上海有色金属,1996,(1):29-32.
材料工程硕士论文参考文献格式二
[1] 韩明娟,中国低活化马氏体钢的激光焊接研究:[硕士学位论文],江苏;苏州大学,2009
[2] R.H. Jones,H.L. Heinisch,K. McCarthy,A low activation materials,J. Nucl.Mater.,1999,271-272: 518~525
[3] 姚军,新型低活化马氏体钢的研究:[硕士学位论文],武汉;华中科技大学,2011
[4] 黄群英,郁金南,万发荣,李建刚,吴宜灿,聚变堆低活化马氏体钢的发展,核科学与工程,2004,24(1): 56~64
[5] Q. Huang,C. Li,Y. L et al. ,Progress in development of China Low ActivationMartensitic steel for fusion application,J. Nucl. Mater.,2007,367-370:142~146
[6] 黄群英,李春京,李艳芬,等. 中国低活化马氏体钢 CLAM 研究进展,核科学与工程,2007,27(1): 41~50
[7] B. van der Schaaf,D.S. Gelles,S. Jitsukawa,A. Kimura et al.,Progress andcritical issues of reduced activation ferritic/martensitic steel development,J.Nucl. Mater.,2000, 283-287: 52~59
[8] R.L. Klueh,D.S. Gelles et al.,Ferritic/martensitic steels - overview of resentresults,J. Nucl. Mater.,2002,307-311:455~465
[9] T. Muroga,M. Gasparotto,S.J. Zinkle,Overview of materials research forfusion reactors,Fusion Eng. & Des.,2002,61-62:13~25
[10] S. Jitsukawa,M. Tamura et al. Development of an extensive database ofmechanical and physical properties for reduced activation martensitic steelF82H,J. Nucl. Mater.,2002,307-311:179~186
[11] T. Hiorse , K. Ando , et al. Joining technologies of reduced activationferritic/martensitic steel for blanket fabrication,Fusion. Eng. Des.,2006,81:645~651
[12] T. Sawai,K. Shiba,A. Hishinuma,Microstructure of welded and thermal-agedlow activation steel F82H IEA heat,J. Nucl. Mater.,2000,283-287: 657~661
[13] A. Alamo,A. Castaing,A. Fonters,et al. Effects of thermal anging on themechanical behavior of F82H weldments,J. Nucl. Mater.,2000,283-287:1192~1195
[14] 乔建生,黄依娜,万发荣,CLAM 钢 TIG 焊后热处理工艺研究,核科学与工程,2009,29(3):239~246
[15] T. Hirose,K. Shiba,T. Sawai,et al.,Effects of heat treatment process forblanket fabrication on mechanical properties of F82H,J. Nucl. Mater.,2004,329-333: 324~327
[16] K. Yusuke,K. Kouichi,S. Masakatsu,Thermal fatigue crack propagationbehavior of F82H ferritic steel,J. Nucl. Mater.,2002,307-311: 471~474
[17] L.A. Belyaeva,A.A Zisma,et al.,Thermal fatigue crack nucleation inferritic-martensitic steels before and after neutron irradiation,J. Nucl. Mater.,2001,283-287: 461~464
[18] H. Tanigawa,S. Jitsukawa,et al.,Effects of helium implantation on hardnessof pure iron and a reduced activation ferritic-martensitic steel,J. Nucl. Mater.,2000,283-287: 470~473
[19] J.Rensman,J.vanHoepen,J.B.M.Bakker,Tensile properties and transitionbehavior of RAFM steel plate and welds irradiated up to 10dpa at 300℃,J.Nucl. Mater.,2002,307-311:245~249
[20] A. Alamo,A. Castaing,A. Fontes,P. Wident,Effects of thermal aging on themechanical behavior of F82H weldments , J.Nucl. Mater. , 2000 ,283-287:1192~1195
[21] J. Rensman,E.V van Osch,M.G. Horsten,D.S Hulst,Post-irradiationmechanical tests on F82H EB and TIG welds,J. Nucl. Mater.,2000,283-287:1201~1205
[22] K. Tsuzuki,M. Sato,H. Kawashima,N. Isei,H. Kimura,H. Ogawa,RecentActivities on the Compatibility of the Ferritic Steel Wall with the plasma in theJFT-2M tokamak,J.Nucl. Mater.,2002,307-311: 1386~1390
[23] R.L Klueha,D.J Alexanderb,M Riethc,The effect of tantalum on themechanical properties of a 9Cr–2W–0.25V–0.07Ta–0.1C steel,J. Nucl. Mater.,1999,273(2): 146~154
[24] T. Hasegawaa,Y. Tomitaa,A. Kohyamab,Influence of tantalum and nitrogencontents, normalizing condition and TMCP process on the mechanicalproperties of low-activation 9Cr-2W-0.2V-Ta steels for fusion application,J.Nucl. Mater.,1998,258-263: 1153~1157
[25] M.A. Sokolova,A. Kimurab,H. Tanigawac,S. Jitsukawac,Fracture toughnesscharacterization of JLF-1 steel after irradiation in HFIR to 5 dpa,J.Nucl. Mater.,2007,367: 644~647
[26] N.Inouea,T. Murogaa,A .Nishimuraa,T. Nagasakaa,Characterization oflow-activation ferritic steel (JLF-1) weld joint by simulated heat-treatments,J.Nucl. Mater.,2000,283-287: 1187~1191
[27] G. Ermile,A. Jarir,Assessment of neutron irradiation effects on RAFMsteels,Fusion. Eng. Des.,2003,88: 118~128
[28] A. Cardella,E. Rigal,L. Bedel,et al.,The manufacturing technologies of theEuropean breeding blankets,J. Nucl. Mater.,2004,329–333: 133~140
[29] 顾康家,CLAM 钢 TIG 焊接组织与性能的研究:[硕士学位论文],江苏;苏州大学,2009
[30] M.A. Sokolova,H. Tanigawab,G.R. Odettec,K. Shibab,R.L. Klueh,Fracturetoughness and Charpy impact properties of several RAFMS before and afterirradiation in HFIR,J.Nucl. Mater.,2007,367-370: 68~73
[31] R.L. Klueh,D.J. Alexander,M. Rieth,The effect of tantalum on the mechanicalproperties of a 9Cr–2W–0.25V–0.07Ta–0.1C steel,J. Nucl. Mater.,1999,273:146~154
[32] R.L. Klueh,M.A. Sokolov,Mechanical properties of irradiated 9Cr–2WVTasteel with and without nickel,J. Nucl. Mater.,2007,367-370: 102~106
[33] 赵飞,万奎贝,乔建生,万发荣,马纪东,许咏丽,吴宜灿,低活化马氏体钢的微观结构与力学性能,核科学与工程,2007,27(1): 59~63
[34] Xizhang Chen,Yuming Huang,M. Bruce,Jianzhong Zhou,An overview ofthe welding technologies of CLAM steels for fusion application,Fusion Eng. &Des.,2012,87: 1639~1646
[35] Y. Li,Q. Huang,Y. Wu,T. Nagasaka,T. Muroga,Mechanical properties andmicrostructures of China low activation martensitic steel compared with JLF-1,J. Nucl. Mater.,2007,367-370: 117~121
[36] Qiang Zhu,Yu-cheng Lei,et al.,Microstructure and mechanical properties inTIG welding of CLAM steel,Fusion Eng. & Des.,2011,86: 407~411
[37] 雷玉成,韩明娟,朱强,巨新,中国低活化钢激光焊接接头微观组织与硬度分析,焊接学报,2010,31(1):5~8
[38] X.Z. Chen,Z. Shen,J.J. Wang,J. Chen,Y.C. Lei,Q.Y. Huang,Effects of anultrasonically excited TIG arc on CLAM steel weld joints,Int. J. Adv. Manuf.Tech.,2012,60: 537~544
[39] 刘永长,材料科学基础,北京:机械工业出版社,2013
[40] 潘金生,仝健民,田民波,材料科学基础北京:清华大学出版社,1998
材料工程硕士论文参考文献格式三
[1] Nagels J, Stokdijk M, Rozing PM. Stress shielding and bone resorption inshoulder arthroplasty. Journal of Shoulder and Elbow Surgery, 2003, 12: 3539.
[2] Mordike BL, Ebert T. Magnesium: Properties—applications—potential.Materials Science and Engineering: A, 2001, 302 (1): 37~45.
[3] 但卫华,王坤余,曾睿,胶原的医学应用与发展前景,生物医学工程与临床,2004,8(1):41~48
[4] Lakshmi SN, Cato TL. Biodegradable Polymers as biomaterials. Progress inPolymers Science, 2007, 32 (8-9): 301~347
[5] Wang Y, Pan J, Han X, et al. A phenomenological model for the degradation ofbiodegradable Polymers. Biomaterials, 2008, 29 (23): 3393~3400
[6] 李世晋,生物医用材料导论,武汉工业大学出版社,2000,55~57
[7] Thamaraiselvi TV, Rajeswari S. Biological evalustion of bioceramic materials-Areview. Trends in Biomaterials and Artificial Organs, 2004, 18(1): 9~17
[8] Kraus T, Fischerauer SF, H nzi AC, et al. Magnesium alloys for temporaryimplants in osteosynthesis: in vivo studies of their degradation and interactionwith bone. Acta Biomaterialia, 2012, 8 (3): 1230~1238
[9] Elias C, Lima J, Valiev R, et al. Biomedical applications of titanium and its alloys.Journal of the Minerals Metals & Materials Society, 2008, 60 (3): 46~49
[10]Turner C, Rho J, Takano Y, et al. The elastic properties of trabecular and corticalbone tissues are similar: results from two microscopic measurement techniques.Journal of Biomechanics, 1999, 32 (4): 437~441
[11]Gefen A. Computational Simulations of Stress Shielding and Bone Resorptionaround Existing and Computer-Designed Orthopaedic Screws. Medical andBiological Engineering and Computing, 2002, 40 (3): 311~322
[12]Levesque J, Hermawan H, Dube D, et al. Design of a Pseudo-Physiological TestBench Specific to the Development of Biodegradable Metallic Biomaterials. ActaBiomaterialia, 2008, 4 (2): 284~295
[13]ASTM G59-57, Annu. Book ASTM Stand. 03.02, 2001 Section 3
[14]Hübert T, Hattermann H, Griepentrog M. Sol–gel-derived nanocompositecoatings filled with inorganic fullerene-like WS2. Journal of sol-gel science andtechnology, 2009, 51 (3): 295~300
[15]Thamaraiselvi TV, Rajeswari S. Biological evaluation of bioceramic materials—areview. Trends Biomater Artif Organs, 2004, 19: 9~17
[16]Gibson L, Ashby M. Cellular solids. Structure and properties. Sydney: PergamonPress; 1988, 1~41
[17]Gibson L, Ashby M. Cellular solids. Structure and properties. Sydney: PergamonPress; 1988. 316~331
[18]DeGarmo PE. Materials and processes in manufacturing, 5th ed. New York:Collin Macmillan; 1979
[19]Saris N-EL, Khawaja JA. Interaction of Mg and polyamines with membraneenzyme activities. In: Halpern MJ, Durlach J, editors, Current research inmagnesium, London: Libbey, 1996, 205~209
[20]Grubbs RD, Maguire ME. Magnesium as a regulatory cation: Criteria andevaluation. Magnesium, 1987, 6 (3): 113~127
[21]Hartwig A. Role of magnesium in genomic stability. MutationResearch/Fundamental and Molecular Mechanisms of Mutagenesis, 2001, 475(1-2): 113~121
[22]Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloys as orthopedicbiomaterials: a review. Biomaterials, 2006, 27 (9): 1728~1734
[23]李龙川,高家诚,王勇,医用镁合金的腐蚀性为与表面改性,材料导报,2003,17(10):29~31
[24]王海涛,镁及其合金在医学领域的应用进展,中国骨与关节外科,2011,4(1):75~80
[25]Lambotte A. L’utilisation du magnesium comme materiel perdu dansl’osteosynthèse. Bull Mem Soc Nat Chir, 1932, 28: 1325~1334
[26]McBRIDE ED. Absorbable metal in bone surgery a further report on the use ofmagnesium alloys. Journal of the American Medical Association, 1938, 111 (27):2464~2467.
[27]Znamenskii. Metallic osteosynthesis by means of an apparatus made of resorbingmetal. Khirurgiia, 1945, 12: 60~63
[28]张佳,宗阳,付彭怀等,镁合金在生物医用材料领域的应用及发展前景,中国组织工程研究与临床康复,2009,13(29):5747~5750
[29]任伊宾,黄晶晶,杨柯等,纯镁的生物腐蚀研究,金属学报,2005,41(11):1228~1232
[30]Alvarez-Lopez M, Pereda MD, del Valle JA,et al. Corrosion behaviour of AZ31magnesium alloy with different grain sizes in simulated biological fluids.ActaBiomater. 2010, 6 (5): 1763~1771
[31]Wang H, Estrin Y, Zúberová Z. Bio-corrosion of a magnesium alloy withdifferent processing histories. Materials Letters. 2008, 62 (16): 2476~2479
[32]Zhang XP, Zhao ZP, Wu FM, et al. Corrosion and wear resistance of AZ91Dmagnesium alloy with and without micro-arc oxidation coating in Hank’ssolution. Journal of Materials Science, 2007, 42 (20): 8523~8528
[33]Yao Z, Li L, Jiang Z. Adjustment of the ratio of Ca/P in the ceramic coating onMg alloy by plasma electrolytic oxidation. Applied Surface Science, 2009, 255(13-14): 6724~6728
[34]Blawert C, Dietzel W, Ghali E, et al. Anodizing treatments for magnesium alloysand their effect on corrosion resistance in various environments. AdvancedEngineering Materials, 2006, 8 (6): 511~533
[35]Xu X, Lu P, Guo M, Fang M. Cross-linked gelatin/nanoparticles compositecoating on micro-arc oxidation film for corrosion and drug release. AppliedSurface Science, 2010, 256 (8): 2367~2371
[36]Gu XN, Li N, Zhou WR, et al. Corrosion resistance and surface biocompatibilityof a microarc oxidation coating on a Mg–Ca alloy. Acta Biomaterialia, 2011, 7(4): 1880~1889
[37]Liu C, Xin Y, Tian X, Chu PK. Corrosion behavior of AZ91 magnesium alloytreated by plasma immersion ion implantation and deposition in artificialphysiological fluids. Thin Solid Films, 2007, 516 (2): 422~427
[38]Wan YZ, Xiong GY, Luo HL, et al. Influence of zinc ion implantation on surfacenanomechanical performance and corrosion resistance of biomedicalmagnesium–calcium alloys. Applied Surface Science, 2008, 254 (17): 5514~5516
[39]Wu G, Zeng X, Yao S, et al. Ion implanted AZ31 magnesium alloy. Materialsscience forum, 2007, 546–549: 551~554
[40]颜廷亭,谭丽丽,杨柯等,生物医用 AZ31B 镁合金表面稀土转化膜的制备及其性能研究,稀有金属材料与工程,2009,38(5):918~922.