作者:薛富波 王玉琨 徐勇勇
【摘要】 目的:提出一种基于改良马氏深度函数的多变量参考值范围统计学建立方法,并以此为基础探讨统计深度函数在解决多变量参考值范围问题方面的实际应用价值. 方法:采用计算机模拟试验和实际数据分析相结合的方式,从参考值范围几何特征、参考值范围合法性与有效性等方面对新的和现有的几种多变量参考值范围建立方法进行比较分析. 结果:改良马氏深度法建立的二元参考值范围具有典型的中心椭圆特征,对于多元正态分布资料,改良马氏深度法与正态分布法一致性在98.5%以上,实例数据分析结果显示改良马氏深度法建立的参考值范围大小比多元正态分布法更接近理论水平. 结论:改良马氏深度法在参考值范围几何特征方面符合要求,在合法性及有效性方面优于现有的成熟方法,可以作为多变量参考值范围的有效统计学建立方法.
【关键词】 参考值 计算机模拟试验 深度函数 统计学方法
0引言
医学多变量参考值范围统计学建立方法是困扰医学统计工作者的重要问题之一. 目前的多变量参考值范围多采用多次重复使用单变量参考区间的方法,但此方法的主要问题之一是无法处理变量间相关性的影响. 针对多元正态分布资料,多元正态分布法仍是最有效的方法[1],而近年来有关学者提出的多指标百分位数法[2]和全息元法[3]等在探索针对其它类型资料的多变量参考值范围建立方法方面做出了有益的尝试.
统计深度函数是针对多元数据的基于空间排列的一种顺序统计量,具有明显的非参数特性,可作为医学多变量参考值范围统计学方法的一种选择. 为探讨统计深度函数在多变量参考值范围统计学方法上的应用价值,本研究提出一种基于改良马氏深度函数的多变量参考值范围统计学建立方法,并通过模拟试验和实例数据分析探讨该方法的实际应用价值.
1材料和方法
1.1材料本研究实例数据资料来源于2001年某省健康青年体检数据. 其中包含3453例受测者,全部为男性,年龄14.5~29.5平均(18.41±1.01)岁. 数据包括血压、体型和体能等三类多元指标. 其中血压指标包括收缩压和舒张压2个变量;体型指标包括身高、坐高、肩宽、体质量、胸围、腰围、臀围等7个变量;体能指标包括肺活量、立定跳远距离、俯卧撑次数以及仰卧起坐次数等4个变量.
1.2方法
1.2.1改良马氏深度函数方法设计统计深度函数用以计算多元数据基于空间排列的秩次以及各种顺序统计量[4]. 本研究以马氏深度函数[4]为基础,经过适当的改良后,将其应用于多变量参考值范围统计学建立方法. 其改良方法如下.
从提高马氏深度函数稳健性考虑,对其进行以下操作:在进行空间排列顺序计算前,先对原始变量进行标准化,使各变量具有相同的变异程度;以中位数向量为位置参数;以Spearman秩相关矩阵为变异矩阵. 改良马氏深度函数可表达为式(1)的形式.
MDS(x,F)=[1+(xs-Mds)′R-1s(xs-Mds)]-1(1)
其中,xs表示各分量经标准化后的数据向量,Mds表示各分量经标准化后的中位数向量,Rs表示原始样本数据的Spearman秩相关矩阵.
改良马氏深度法建立多变量参考值范围的主要操作步骤如下: ①应用改良马氏深度函数将多元数据类型的参考样本转化为统计深度指标,实现多元数据向单变量数据的转换; ②采用百分位数法建立统计深度指标的指定容量的单侧参考值区间(右侧区间,包括中心点对应的统计深度最大值); ③对于新样品,先依据参考样本的中位数向量和秩相关矩阵计算其对应的统计深度,并依据上述统计深度单侧参考值区间判断其正、异常分类.
1.2.2运算环境与分析方法本研究的全部分析计算过程均在SAS 9.1软件环境下通过编程方法完成. 将从参考值范围空间几何特征、参考值范围一致性以及实例分析等方面对改良马氏深度法和现有的几种方法(多元正态分布法、多指标百分位数法、全息元法)进行对比分析,以考察改良马氏深度法的优缺点及其实际应用价值.
参考值范围空间几何特征分析以计算机模拟数据为基础,为简便操作仅从二元正态分布资料参考值范围的几何分布形态入手进行探讨. 具体操作为:针对二元正态分布的模拟数据建立多变量参考值范围,并直接对参考样本进行分类并绘制散点图,观察其空间几何特征,从而考察各种方法所建参考值范围的合理性.
由于多元正态分布法是针对多元正态分布资料的最可靠的多变量参考值范围统计学方法,此处我们通过考察多元正态分布情形下改良马氏深度法和多元正态分布法所建立参考值范围的一致性(针对参考样本的分类结果一致性),来验证该方法的可靠性.
实例分析将采用随机抽样方法(采用SAS的surveyselect过程实现)从实例数据抽取800人作为参考样本,应用改良马氏深度法和多元正态分布法建立其50%,75%,95%的参考值范围,并将此参考值范围应用于全部受检者,判断其“正、异常”分类,计算“正常”者的百分比并与理论水平比较,从而评价两种方法所建立参考值范围的可靠性.
2结果
2.1参考值范围几何特征一般来讲,理想的多变量参考值范围应当表现为样本数据点分布中心区域上椭圆或近似椭圆的几何形态. 本研究的分析结果显示,现有三种方法中多元正态分布法的参考值范围呈中心区域的椭圆型,多指标百分位数法为矩形,而全息元法则为带状,后两者的结果不符合中心椭圆区域的基本要求. 改良马氏深度法建立的参考值范围与多元正态分布法一致,呈中心区域的椭圆形. 对于三维或更高维度的数据样本,不难推断上述结果应当同样适用,此处不再列出.
2.2参考值范围一致性分析结果显示,改良马氏深度法建立的参考值范围与多元正态分布法具有很高的一致性,一致率均在98.5%以上.
2.3实例分析对于全部三类多元指标,改良马氏深度法建立的参考值范围大小均比多元正态分布法更接近理论水平,表现出更高的可靠性(表1).表1三类多元指标参考值范围可靠性对比情况
3讨论
多变量参考值范围是医疗卫生领域常见的数据处理问题之一. 多元正态分布法的应用条件较为严格,要求样本服从多元正态分布的假设. 虽然某些资料可通过变量变换的方式转换为多元正态分布,但实际工作中多数数据资料仍无法满足此条件[1],因此多元正态分布法的适用范围有限. 目前常用的替代方法多次重复应用单变量参考区间的方法仍然无法解决,所进行的有关此类问题的研究也未能完全解决多元数据各分量间相关性所带来的问题.
统计深度函数作为一种描述多元数据空间分布相对位置的非参数统计量,为多变量参考值范围统计学建立方法的降维操作提供了新的选择[5-8]. 马氏深度函数考虑了多元数据的内部相关性,更符合医学多变量参考值范围中的实际应用需要[9]. 然而其定义中的位置参数和变异矩阵以参数法为基础,影响了其稳健性. 本研究以马氏深度函数为基础,提出一种改良的马氏深度函数,并尝试了该深度函数在解决多变量参考值范围问题方面的应用效果. 改良马氏深度改变了原有函数定义中的位置参数和变异矩阵,提高了深度函数的稳健性. 从本研究的分析结果来看,改良马氏深度法能够建立合法有效的多变量参考值范围,具有更高的稳健性,在医学多变量资料参考值范围统计学建立方法方面值得进一步的探讨和研究.
【参考文献】
[1] Hekking M, Lindemans J, Gelsema ES. A computer program for constructing multivariate reference models[J]. Comput Methods Programs Biomed, 1997, 53(3): 191-200.
[2] 陈彬, 李克, 林昆, 等. 用多指标百分位数法确定医学参考值[J]. 西部医学, 2003, 1(2): 185-186.
[3] 王润华, 田小兵. 全息元法制定多指标参考值范围研究[J]. 重庆医科大学学报, 2001, 26(2): 171-174.
[4] Zuo YJ, Robert S. General notions of statistical depth function[J]. Anal Stat, 2000, 28(2): 461-482.
[5] Gerhard JW. A note on the depth function of combinatorial optimization problems[J]. Dis Appl Math, 2001, 108: 325-328.
[6] Anja S, Peter JR. Halfspace depth and regression depth characterize the empirical distribution[J]. J Multivariate Anal, 1999, 69: 135-153.
[7] Zuo YJ, Robert S. Structural properties and convergence results for contours of sample statistical depth functions[J]. Anal Stat, 2000, 28(2): 483-499.
[8] Zuo YJ, Robert S. Nonparametric Notions of Multivariate "Scatter Measure" and "More Scattered" Based on Statistical Depth Functions[J]. J Multivariate Anal, 2000, 75(1): 62-78.
[9] Liu RY, Singh K. A quality index based on data depth and multivariate rank tests[J]. J Am Stat Assoc, 1993, 88: 252-260.
关于改良马氏深度函数法建立多元参考值范围的理论与应用
论文价格:0元/篇
论文用途:仅供参考
编辑:论文网
点击次数:0
Tag:
如果您有论文相关需求,可以通过下面的方式联系我们
客服微信:371975100
相关论文大全文章