风光发电及电动汽车充放电随机性对配电系统的影响研究
开题报告
目 录
一、选题背景
二、研究目的和意义
三、本文研究涉及的主要理论
四、本文研究的主要内容及研究框架
(一)本文研究的主要内容
(二)本文研究框架
五、写作提纲
六、本文研究进展
七、目前已经阅读的文献
一、选题背景
电力系统的智能化发展趋势己经成为近年来电力工业界和学术界关注的热点,智能电网必须能够文持大规模间歇性可再生能源和分布式电源。我国已成为新能源发电设备尤其是光伏电池的制造大国.,风力发电也取得了巨大成就。凤光发电具有一定的互补性和随机性长期来看,某些季节风能丰富但光能较少,而有些季节风能较少光能却丰富;短期来看,白天光能丰富,夜晚没有光能但一般风力较大。风光混合发电系统能够在一定程度上弥补单独风力发电或光伏发电的供电不稳定性,但风光发电受自然气候严重影响的发电随机性、间隙性、波动性,与其他常规发电资源的可靠、可控、可调相比,还存在相当大的差距.国内外学术界、工程界、经济界仍处于密集研究、探索、实践中。电动汽车(ElectricVehicle,EV)在节能减排、逼制气候变暖以及保障石油供应安全等方面有着传统汽车无法比拟的优势,受到了各国政府、汽车生产商以及能源企业的广泛关注。日益提井的电池设备、充电技术也促进电动汽车不断普及。研究表明,在中等发展速度下,至2020、2030和2050年,电动汽车占美国汽车总量的比例将分别达到35%,51%和62%。各国正在建造大量的充电设施,使电动汽车能够更方便地接入电力系统,以直接对电池进行充电。我国也制定了适合国情的发展规划,推进电动汽车产业化进程,提高车网(电网)融合程度。由于大多数私用电动汽车一天中多数时间是闲置的,这些闲置的电动汽车可以在用电高峰期将电能反送到电力系统中。电动汽车与电网互动(VehicletoGrid, V2G)的概念最早由美国特拉华大学的Kempton和Letendre于1997年提出,可入网电动汽车的引入为电力系统的安全与经济运行带来了新的挑战。电动汽车作为电力系统中的一类特殊负荷,存在时间(充电时间不确定)-空间(充电位置不确定)-行为(行驶、充放电行为不确定)三种维度上的随机不确定性,当大量无任何协调的电动汽车并入电网后,必然会对电网的安全经济运行产生巨大影响。上述不确定性给原本就变量众多的大规模电力系统的规划与运行优化带来极大的困难。风光混合发电系统的发电功率因地域、季节、天气状况不同而不同,凤速随机变化导致的风电机组输出功率不确定性和太阳辐射强度随机变化导致的太阳能电源输出功率不确定性,都会给分布式电源的规划问题带来风险,因此在建模时就需要给予适当考虑。大量电动汽车在无序充电的情况下,可能增加系统的最大负荷,降低全网负荷利用小时数,降低电网投资与收益的比例,降低电网效率。特别是含有可再生能源发电的电力系统,如不协调可再生能源发电的随机性与电动汽车充放电的随机性间的关系,还会导致发电能力和电网送电能力不能充分发挥,进而使得发输电成本增高和大量资源浪费。
二、研究目的和意义
如何对凤光混合发电及EV的随机特性进行建模与研究,合理规划配电系统中的可再生能源发电;挖掘可再生能源发电与负荷用电、EV充放电间的正向耦合关系,进一步研究电动汽车作为可再生能源发电系统的储能装置的可行性方法;是推进我国可再生能源安全高效利用的有效途径。
三、本文研究涉及的主要理论
在世界能源短缺和环境污染日益严重的今天,风能作为一种清洁、技术成熟的可再生能源,近年来在世界各国得到了长足发展。地球上的风能资源非常丰富,开发潜力巨大。全球风能总量约为27400亿kW,其中可利用部分约为200亿kW,比地球上可开发的水能总量大10倍。风能将成为世界可再生能源格局中的重要力量.丹麦是世界上最早大规模开始风力发电的国家,在风电技术上也位居世界领先地位,是最早掌握海上风电技术开发的国家,到2025年丹麦风力发电将占国内发电总量的50%。德国规定的电价保证凤力发电的投资者可以获得一定的利润,投资一座风电场一般7~8年就可以收回成本,德国是目前世界上风力发电机技术最先进的国家。英国的海上风电项目稳步增长,已有13座海上风电场陆续建立起来,总装机容量超过1155MW,由于英国四面环海,其海域内风力资源占欧洲总资源相当大的比例。美国的风能资源丰富,据估计,如果全部开发,美国三个州(北达科他州、堪萨斯州和德克萨斯州)的风电就可以满足全美的电力需求。目前,美国最大的风电场是位于德克萨斯州的马谷风能中心(Horse HollowWind Energy Center ),该风能中心建有421个风力发电机组,装机容量达到735MW。近几年来,印度风机装机始终排在世界的前几名,印度风电快速增长的动力来自于国家的可再生能源激励政策,印度政府一直积极支持风电的发展。我国“十一五"期间,风力发电装机容量连续五年翻番增长,风电装机容量世界第一。2007年之前,国内风电场70%的机组从欧洲进口,2007年以后逐步实现了国产化,单机容量越来越大,图1.1为我国风力发电系统单机容量的增长情况。由于风的随机性,风力发电的输出功率不稳定。风电容量比较高的电力网中,可能会产生电能质量问题。例如电压波动和闪变、频率偏差、谐波等问题,这种随机性使系统中源-网-荷的平衡难以控制,成为电力系统的规划问题中及待解决的焦点问题。
2013年,全球光伏新增装机容量达到36GW,日本、美国的装机量分别达到6GW、和3.5GW,欧洲地区光伏装机量约为9GW。曰本是最早推广光伏发电产业的国家之一,2004年以前日本一直雄据光伏产业的霸主地位,日本光伏分布式发电应用广泛,不仅用于公园、学校、医院、展览馆等公用设施,还开展了居民住宅屋顶光电的应用示范工程。但自从2005年开始,日本取消了“阳光屋顶”计划,装机容量呈下降趋势,2009年后,曰本重新开始太阳能屋顶补贴计划,光伏产业呈现发展新面貌。美国是最早实现太阳能转换为电能的国家,美国光伏产业的发展主要得利于光伏发电相关的组件价格大幅下降及联邦政府的大力补贴。可以说是美国是世界上对光伏产业支持力度最大的国家。德国2009年的太阳能总装机容量为4GW,2010年则增长到10GW,2(m年更是创下世界纪录,年装机容量达到7.5GW。2013年我国新增装机量达10GW,同比增长122%,居全球首位,其中光伏大型地面电站约为7GW,分布式发电约为3GW。2013年,国务院出台“国发24号文”等多个政策文件,从上网电价、补贴资金、并网管理等多个层面破解国内应用市场发展的瓶颈,力促国内市场的规模化启动。光伏电站在现有补贴水平和出力无限制的情况下,掀起了新一轮大型电站建设高潮。2014年,在光伏发电成本的持续下降、政策的持续支持和新兴市场快速兴起等有利因素的推动下,全球光伏市场仍将持续#"大。预计2014年全球光伏新增装机量将达到43GW,我国将达到12GW,大型电站和分布式发电均为6GW左右.但由于分布式发电商业模式尚未成熟,潜在风险点较多,规模化推广光伏发电阻力仍较大。另一方面,太阳能光伏发电受到太阳辖射强度的影响,其出力具有较强的随机性与间歇性,进而对电网的调峰、调频、备用、潮流、母线电压等都具有较大影响。
四、本文研究的主要内容及研究框架
(一)本文研究的主要内容
本文通过进行风光混合发电及电动汽车特性的研究,进行含可再生能源发电的配电系统的规划问题的研究,并进行了风光储发电系统的发电容量规划;分析风光混合发电及电动汽车充放电随机性,研究考虑V2G随机性的配电系统的负荷曲线变化、从供电可靠性入手,计及用户断电赔偿费用优化含间歇能源的配电系统的凤力发电的容量,探讨电动汽车作为间歇能源发电系统储能装置的有效方法。通过概率潮流分析深度挖掘可再生能源发电与负荷用电间的正向辅合特性;具体的工作主要集中在以下的几个方面:
第一章为绪论。首先阐述论文研究的背景,其次介绍风光发电的研究现状及对配电系统的主要影响和电动汽车发展状况及其对配电系统的影响。然后,总结归纳国内外相关研究的现状及存在的主要问题。第二章探讨确定条件下分布式电源的选址与定容问题。以有功损耗、电压质量、电压稳定指标、线路载荷能力为优化目标,用比较矩阵法确定各个目标的权重,以风力发电为分布式电源,优化配电系统的DG安装容量与位置。本章的优化问题即包含离散变量又包含连续变量,为了提髙快速寻优及避免陷入局部最优的能力,用云理论改进遗传算法,根据染色体的适应度改变遗传与变异的量进行寻优。最后将该方法用于28节点配电系统的DG的选址定容,并与普通遗传算法进行了比较。第三章开展基于成本/可靠性评话的含电动汽车的风力发电系统容量规划。建立了合有风力发电与电动汽车的配电系统的成本/可靠性评估模型,考虑了风力发电的不摘定性,可入网电动汽车充放电的随机性与规律性,以考虑可中断供电负荷赔偿费用的配电系统年费用最小为目标将配电系统中的风力发电容量进行规划。釆用蒙特卡洛仿真法模拟风机出力、发电机及负荷状态求得用户断电功率与断电时间,以IEEE-RBTS (Roy BilHnton TestSystem)为测试系统,对所提出的优化模型进行了仿真,求得在不同EV数量的情形下以系统年费用(包括固定成本、维护运行费用、燃料费用)与负荷断电赔偿费用之和最小为目标的风力发电的安装容量。第四章发展了考虑风光发电与EV充放电随机性的概率潮流计算方法。建立了含有风电与太阳能发电和EV的电力系统概率潮流模型。以历史气象数据为基細对不同季节和不同天气状况下的凤光数据进行了分析,并计及了风电、太阳能发电、EV充放电及负荷的不确定性,在此基础上对不同季节中每曰不同时段的电力系统采用三点估计法(3-pointestimation method,简称3PEM)进行概率潮流计算,进而计算潮流结果的统计特性。最后,以某140节点配电系统为例对所构造的概率潮流模型和采用的求解方法进行验证,通过与蒙特卡洛仿真法求解得到的概率潮流结果进行比较,证明了本文方法的准确性。此外,还考察与分析了含风力发电、光伏发电、电动汽车的配电系统在不同季节不同时间段的概率潮流结果的差异。第五章研究了计及储能系统充放电策略优化的风光混合发电系统容量优化问题。在第三章建立的风力发电随机性模型与第四章建立的光伏发电随机性模型的基础上,对蓄电池的充放电功率进行建模,釆取动态规划法对蓄电池充放电控制策略进行优化;然后建立保证供电可靠性的前提下配置最经济的风力发电/光伏发电/蓄电池的容量模型。最后以我国某地气象数据为依据,以IEEE-RBTS-BUS4的负荷为例,进行风光混合发电系统的容量优化,并对所得结果进行了分析。第六章对本文工作做了总结,并指出了有待进一步研究的问题。
(二)本文研究框架
本文研究框架可简单表示为:
五、写作提纲
致谢 3-4
摘要 4-6
Abstract 6-8
1 绪论 12-31
1.1 研究背景和意义 12-13
1.2 风光发电概述 13-19
1.2.1 风力发电与光伏发电的发展状况 13-16
1.2.2 风光混合发电的发展状况 16
1.2.3 风光混合发电的简介 16-17
1.2.4 风光混合发电系统存在的问题 17-18
1.2.5 以风光发电为分布式发电系统的配电系统规划问题 18-19
1.3 电动汽车概述 19-25
1.3.1 电动汽车类型及其特点 21-22
1.3.2 国内外研究现状 22-24
1.3.3 电动汽车对电力系统的影响 24-25
1.4 研究现状 25-29
1.4.1 风光发电随机性与EV充放电随机性对配电系统的影响的研究 26-28
1.4.2 现有研究存在的问题 28-29
1.5 本文主要的研究内容和工作 29-31
2 基于改进遗传算法的分布式电源的选址与定容 31-47
2.1 引言 31
2.2 优化目标的建模 31-34
2.2.1 数学推导 31-33
2.2.2 优化目标 33-34
2.3 权重的分配 34-36
2.4 基于云理论的自适应遗传算法(cloud-based adaptive genetic algorithm CAGA) 36-41
2.4.1 云理论简介 36-37
2.4.2 基于云理论的自适应遗传算法 37-41
2.5 算例 41-45
2.5.1 仿真系统基本情况介绍 41
2.5.2 仿真结果 41-44
2.5.3 当配电系统负荷提高50%时的仿真结果 44-45
2.6 本章小结 45-47
3 基于成本/可靠性评估的含电动汽车的风力发电系统容量规划 47-64
3.1 引言 47-48
3.2 EV充放电功率与风力发电系统发电功率建模 48-52
3.2.1 EV充放电功率的随机性 48-49
3.2.2 风力发电功率的概率密度函数 49-51
3.2.3 负荷功率的概率密度函数 51
3.2.4 风机与负荷点的停运仿真 51-52
3.2.5 蒙特卡洛仿真 52
3.3 可靠性/成本评估模型 52-57
3.3.1 成本评估模型 52-54
3.3.2 负荷断电赔偿费用 54-55
3.3.3 确定风力发电系统最优容量的计算步骤 55-57
3.4 算例 57-63
3.5 本章小结 63-64
4 含有风电与太阳能发电以及电动汽车的电力系统概率潮流计算 64-78
4.1 引言 64-65
4.2 风电/光电出力的概率密度与电动汽车充放电功率概率密度 65-69
4.2.1 风电机组出力的概率密度 65-66
4.2.2 光伏发电出力概率密度 66-68
4.2.3 电动汽车充放电功率的概率密度 68-69
4.3 考虑天气状况的三点估计法概率潮流模型 69-71
4.3.1 三点估计法计算概率潮流 69-70
4.3.2 考虑不同季节不同天气状况时每天各小时概率潮流 70-71
4.4 算例与结果 71-77
4.4.1 风力发电机参数 71
4.4.2 光伏发电参数 71-72
4.4.3 电动汽车充放电功率参数 72
4.4.4 负荷的概率密度参数 72-73
4.4.5 140节点配电系统仿真结果 73-77
4.5 本章小结 77-78
5 计及储能系统充放电策略的风光混合发电系统容量优化 78-90
5.1 引言 78-79
5.2 风电、光电的发电功率与储能系统的充放电功率 79-81
5.3 风光混合发电系统的最优容量确定方法 81-82
5.3.1 供电可靠性指标 81
5.3.2 优化模型 81-82
5.3.3 优化步骤 82
5.4 算例分析 82-89
5.4.1 参数设置 82-83
5.4.2 不同情况的优化结果 83-86
5.4.3 不同气候特征的影响 86-89
5.5 本章小结 89-90
6 结论与展望 90-92
6.1 结论 90-91
6.2 展望 91-92
参考文献 92-103
六、本文研究进展(略)
七、目前已经阅读的主要文献
[1] Hollands K, G. T” Huget R. G. Probability density function for the clearness index withapplications [J]. Solar Energy, 1982,30(3); 195-209,
[2] Burton T,,Sharpe D.’ Jenkins N.,et al. Wind energy handbook [M]. Chichester: John Wiley& Sons Ltd. 2001.
[3] Dickinson W. C., Cheremisinoff R N. Solar energy technology handbook [M]. London:Butterworth, 1980.
[4] Duvall M?,Knipping E., Alexander M.,et al. Environmental assessment of plug-in hybridelectric vehicles. Volume 1: Nationwide greenhouse gas emissions [R]. Palo Alto, CA:Electric Power Research Institute, 2007
[5] Madrid C’,Argueta J” Smith L Performance characterization-1999 Nissan Altra-V2G withlithium-ion battery [R]. Southern California EDISON,Sep.1999.
[6] Kempton W., Letendre S. Electric vehicles as a new power source for electric utilities [J],Transportation Research Part D, 1997,2(3): 157-175.
[7]胡泽春,宋永华,徐智威,等.电动汽车接入电网的影响与利用[J].中国电机工程学报,2012, 32(4): 1-10.
[8] Chenrui J., Tang J., Ghosh P. Optimizing Electric Vehicle charging: a customer'sperspective [J], IEEE Transactions on Vehicular Technology, 2013,62(7): 2919-2927.
[9] Qian K.,Zhou C.,Allan M,,et al. Modeling of load demand due to V2G battery charging indistribution systems [J]. IEEE Transactions on Power Systems, 2011,26(2): 802-810.
[10]Mendez V. H.,Rivier J,, Fuente J. I., et al. Impact of distributed generation on distributioninvestment deferral [J]. Electrical Power and Energy Systems, 2006,28(4): 244-252.
[11]朱芳,王培红.风能与太阳能光伏互补发电应用及其优化[J].上海电力,2009,(1):23-26.
[12]李與.风光互补混合发电系统优化设计[D].中国科学院硕士研究生学位论文,2001.
[13]王宇.风光互补发电控制系统的研究和开发[D].天津大学硕士研究生学位论文,2008.
[14]曹阳.小型高效风光互补电源的研究[D].贵州大学顿士研究生学位论文,2008.
[15]Usa Boonbumroong, Naris Pratinthong. Model-Based optimization of stand alone hybridpower system [C]. World Renewable Energy Congress, 2009:1-10.
[16]Kamaruzzaman Sopian, Azami Zaharim, Yusoff Ali, et al. Optimal operational strategy forhybrid renewable energy system using genetic algorithms [J]. WSEAS Transactions onMathematics, 2008, 24(7): 130-140.
[17] Shamim Kaiser, Arifur Rahman. An optimal operating strategy of an integrated energysystem for a typical rural village in Bangladesh [J]. Engineering and Applied Sciences, 2006,(4):309-315.
[18]彭军,李丹,王清成,等.户用型可再生能源发电系统在苏尼特右旗应用的调查分析[J].农业工程学报,2008,24(9): 193-198.
[19]EKE R., KARA 0., ULGEN K. Optimization of a Wind/PV hybrid power generationsystem [J], International Journal of Green Energy,2005,2(1): 57-63.
[20]BERNAL-AGUSTIN J. L.,DUTO-LOPEZA R. Multi-objective design and control ofhybrid systems minimizing costs and unmet load [J]. Electric Power Systems Research,2009,79(1): 170-180.
[21] YANG H. X” WEI Z,LOU C. Z. Optimal design and techno-economic analysis of a hybridsolar-wind power generation system [J], Applied Energy,2009,86(2): 163-169,
[22]KOUTROULIS E,KOLOKOTSA D,POTIRAKIS A., et al. Methodology for optimalsizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms [J].Solar Energy,2006,80(9): 1072-1088.
[23]Hu Weihao, CHEN Zhe,BAK-JENSEN B. Optimal operation strategy of battery energystorage system to real-time electricity price in Denmark [C]. Proceedings of IEEE Powerand Energy Society General Meeting,July 25-29,2010,Minneapolis, MN, USA: 1-7.
[24]Rupanagunta. R,Baughman. M. L.,Jones J. W. Scheduling of cool storage using non-linearprogramming techniques [J], IEEE Transactions on Power Systems, 1995,10(3):1279-1285.
[25]Oudalov A,Cherkaui R,Beguin A. Sizing and optimal operation of battery energy storagesystem for peak shaving application [C]. IEEE Proceedings of Power Technology, July 1-5,2007,Lausanne Switzerland: 621-625.
[26] Chacra. F. A’,Bastard. R,Fleury. G.,et al. Impact of energy storage costs on economicperformance in a distribution substation [J]. IEEE Transactions on Power Systems, 2005,20(2): 684-691.
[27] Lee. T, Y. Operating schedule of battery energy storage system in a time of use rateindustrial user with wind turbine generators: a multipass iteration particle swarmoptimization approach [J]. IEEE Transactions on Energy Conversion, 2007,22(3): 774-782.
[28]Fung. C. C., Hoscyc. Nayar. V. Optimisation of a hybrid energy system using simulatedannealing technique [C]. Proceedings of IEEE International Conference on Computer,Communication, Control and Power Engineering, October 19-21, 1993,Beijing, China:235-238,
[29]Duvall M,Knipping E.,Alexander M,,et ah Environmental assessment of plug-in hybridelectric vehicles. Volume 1: Nationwide greenhouse gas emissions [R]- Palo Alto, CA:Electric Power Research Institute, 2007.
[30]中华人民共和国科技部.电动汽车科技发展“十二五”项规划[EB\OL].2012-08-07
[31]李惠玲,白晓民.电动汽车对配电系统的影响及对策[J].电力系统自动化,2011,35(17):38-44.